Digitally retrofitting real-time production monitoring

May 30, 2018 // By Howard Forryan
One of the key issues facing today’s manufacturing industry is how to improve the productivity of existing production lines for minimum cost outlay. This article demonstrates how a “digital retrofit” of integrating additional intelligent devices and sensor technology into a well-established production line of plastics injection moulding machines can help to achieve these objectives.

An important element of Industry 4.0 is the ability to apply digitalisation to the production environment by adding more intelligence into the existing process. Initially manufacturers have been wary of Industry 4.0, on the assumption that effective implementation would require expensive major changes to production lines. However, through a digital retrofit approach, it is possible to “smarten” up existing processes for minimal cost over a short period of time, resulting in a fast return on investment and immediate productivity gains. 

Digital retrofit provides four different ways to improve production processes, increase cost savings and extend the lifetime of different types of machinery: Legacy machine protocol conversion; Condition monitoring / Energy measurement; Asset management; and Predictive maintenance.

 

Legacy machine protocol conversion

Central machine monitoring and process optimisation offer the best way to ensure that production lines and their associated constituent parts operate more effectively and economically. Many machines in well-established production lines, which may be between 15 and 30 years old, can still perform their main functional tasks successfully. However, they do so much less efficiently than their modern-day counterparts. For example, they do not have the same level of computing power, enough memory capacity to record and store relevant data, or the ability to communicate with their modern equivalents. In many cases, these machines also use data formats and operating communication language protocols from the 1980s and 1990s, which are no longer used by today’s PLCs and industrial PCs.

A prime example of a production environment that accommodates mixed protocol legacy machines would be a plastics injection moulding machine (PIMM) line. Such machines, when well maintained, can attain as much as a 30-year operational life. However, some of the older software protocol operating languages (e.g. EUROMAP 15), cannot be directly connected to a factory MES (Manufacturing Execution System) without expensive annual custom software licensing charges. In a lot of factories these machines still require individual programming by an operator, which can be very time consuming for reasonably large installations and therefore potentially requiring input from multiple personnel.

Design category: 

Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.