RF transformers shrunk and then rolled up on top of CMOS: Page 2 of 2

May 21, 2018 // By Julien Happich
Doing away with the complex miniaturized coil manufacturing techniques used for embedding on-chip RF transformers with limited performance planar or multi-layered coils, researchers from the University of Illinois have turned simple 2D planar loop designs into closely inductively coupled 3D coils.

Tilted SEM image of a partially rolled-up sample,
showing the transition of the 2D primary and
secondary strips to 3D coils.

In the end, it is the vertical membrane structure, thickness and stress that determines the inner diameter after the device is rolled up, while the horizontal layout determines the spatial configuration of the coils and their spacing. The authors report excellent manufacturing yields, designing RF transformers of different diameters from 18.7 to 50μm with different turn ratios.

Samples RF transformers were designed with turns ratios (n) from 1.5:1 to 2.5:1, with self-resonant frequencies from 11.5 GHz to over 20GHz. At 7GHz, the paper reports maximum Q factors for the primary and secondary coils of 1.65 and 1.45, respectively. With a footprint as little as 0.003mm2, the devices were stable until annealed at 350°C.

For the samples they fabricated at a turns ratio of 2.2:1, the authors report an index of performance of 235, which they claim represents a 47% improvement over the best on-chip planar counterpart reported so far for the same turns ratio. What's more, the devices' coupling efficiency and performance increase as the turns ratio scales up, making the devices easy to scale down while being fully compatible with all planar semiconductor processing, including CMOS and MEMS technologies.

What about the practical packaging of these devices as standalone or embedded RF transformers?

The researchers measured the RF transformers' stiffness, orders of magnitude larger than that of a suspended MEMS high-Q factor spiral inductor with X-beams (taken for comparison), meaning the structure shows some degree of mechanical flexibility and could easily withstand external forces during packaging or shocks with a large g force. When designed with more turns for higher inductance, the S-RUM on-chip transformers could be made even more robust.

University of Illinois – www.illinois.edu


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.