Skin-worn ultrasound patch can flex and stretch

September 14, 2018 // By Julien Happich
Researchers from the University of California San Diego have devised a skin-conformable ultrasound patch able to detect blood pressure waveforms deep under the skin, to monitor central blood pressure as an indicator of a person's cardiovascular condition.

Their paper "Monitoring of the central blood pressure waveform via a conformal ultrasonic device" published in the Nature Biomedical Engineering journal reviews existing alternative, noting that today's ultrasound instruments and methodologies for such monitoring are either cumbersome or result being uncomfortable for the patient. Optical-based solutions such as photoplethysmography fail to detect arterial blood pressure but can only make measurements at the skin surface (peripheral blood pressure waveforms) and extrapolate from there, which hinders accuracy for cardiovascular disease diagnosis and prognosis.

As well as choosing to use ultrasonic waves which can effectively penetrate human tissues up to a depth of 4cm, the researchers focused their effort on making a wearable device that can flex and conform to the skin's surface for better readouts, without relying on the gel typically used in ultrasound probes to achieve good acoustic coupling.

Only 240μm thick, their device hybridizes a 4×5 array of 0.9×0.9mm2 rigid piezoelectric transducer elements with soft structural components including meandering stretchable electrodes, the whole lot encapsulated with a silicone elastomer whose modulus is on par with that of human skin.


The island-bridge structure allows the patch to be flexible and stretchable. Credit: Chonghe Wang/Nature Biomedical Engineering.

Because the patch is so thin, flexible and stretchable (with a reported elastic strain up to 30%), it can be softly laminated on the skin for optimum acoustic coupling.


Vous êtes certain ?

Si vous désactivez les cookies, vous ne pouvez plus naviguer sur le site.

Vous allez être rediriger vers Google.