Ultra-sensitive electrical biosensor based on Tunnel-FET design beats conventional field effect transistors: Page 2 of 2

April 17, 2012 // By Julien Happich
Researchers at the University of California, Santa Barbara have come up with a new quantum mechanical-based biosensor that could detect biomolecules at ultra-low concentrations, from instant point-of-care disease diagnostics, to detection of trace substances for forensics and security.
and its band diagram illustrating band-to-band-tunneling triggered by biomolecule conjugation. Credit: Peter Allen, UCSB

"The abruptness of current increase in an electrical switch is quantified by a parameter called subthreshold swing and the sensitivity of any FET based biosensor increases exponentially as the subthreshold swing decreases. Thus, similar devices such as Impact-ionization- or Nano-electromechanical-FETs are promising for biosensing applications," explained Banerjee. "But since the T-FETs can be easily integrated in the widely available silicon-based semiconductor technology, they can be mass produced in a cost effective manner."

According to the researchers, their T-FET biosensor is expected to have tremendous impact on research in genomics and proteomics, as well as pharmaceutical, clinical and forensic applications – including the growing market of in-vitro and in-vivo diagnostics. Banerjee and Sarkar have filed a patent disclosure for their technology, which the researchers anticipate can be ready for the marketplace in as few as two years.

Visit the University of California - Santa Barbara