5nm only a few years away, say IBM Research scientists

5nm only a few years away, say IBM Research scientists
Technology News |
IBM together with its Research Alliance partners Globalfoundries and Samsung, and equipment suppliers have announced the development of a novel 5nm process, building silicon nanosheet transistors that will enable 5 nanometer chips.
By Julien Happich

Share:

In a short introduction video, Nicolas Loubet, in charge of advanced epitaxy and sub-7nm device integration at IBM research explains that resulting increase in performance will help accelerate cognitive computing, the Internet of Things (IoT), and other data-intensive applications delivered in the cloud. The power savings could also mean that the batteries in smartphones and other mobile products could last two to three times longer than today’s devices, before needing to be charged.

Scientists working as part of the IBM-led Research Alliance at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY achieved the breakthrough by using stacks of silicon nanosheets as the device structure of the transistor, instead of the standard FinFET architecture, which is the blueprint for the semiconductor industry up through 7nm node technology.

The silicon nanosheet transistor demonstration, as detailed in the Research Alliance paper “Stacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET”, and published by VLSI, proves that 5nm chips are possible, more powerful, and not too far off in the future.

Compared to the leading edge 10nm technology available in the market, a nanosheet-based 5nm technology can deliver 40 percent performance enhancement at fixed power, or 75 percent power savings at matched performance.

“This announcement is the latest example of the world-class research that continues to emerge from our ground-breaking public-private partnership in New York,” said Gary Patton, CTO and Head of Worldwide R&D at Globalfoundries. “As we make progress toward commercializing 7nm in 2018 at our Fab 8 manufacturing facility, we are actively pursuing next-generation technologies at 5nm and beyond to maintain technology leadership and enable our customers to produce a smaller, faster, and more cost efficient generation of semiconductors.”

IBM Research has explored nanosheet semiconductor technology for more than 10 years. This work is the first in the industry to demonstrate the feasibility to design and fabricate stacked nanosheet devices with electrical properties superior to FinFET architecture.


This same Extreme Ultraviolet (EUV) lithography approach used to produce the 7nm test node and its 20 billion transistors was applied to the nanosheet transistor architecture. Using EUV lithography, the width of the nanosheets can be adjusted continuously, all within a single manufacturing process or chip design.

This adjustability permits the fine-tuning of performance and power for specific circuits – something not possible with today’s FinFET transistor architecture production, which is limited by its current-carrying fin height. Therefore, while FinFET chips can scale to 5nm, simply reducing the amount of space between fins does not provide increased current flow for additional performance.

Also talking in a short video, Huiming Bu, Director of Si Integration and Device at IBM Research said that the actual manufacture of 5nm devices could happen within the next few years.

“Today’s announcement continues the public-private model collaboration with IBM that is energizing SUNY-Polytechnic’s, Albany’s, and New York State’s leadership and innovation in developing next generation technologies,” said Dr. Bahgat Sammakia, Interim President, SUNY Polytechnic Institute. “We believe that enabling the first 5nm transistor is a significant milestone for the entire semiconductor industry as we continue to push beyond the limitations of our current capabilities.”

Part of IBM’s $3 billion, five-year investment in chip R&D (announced in 2014), the proof of nanosheet architecture scaling to a 5nm node continues IBM’s legacy of historic contributions to silicon and semiconductor innovation.

IBM Research – www.ibm.com/research

Related articles:

Samsung adds 4nm and FDSOI processes to its roadmap

Linked Articles
eeNews Europe
10s