Better surfaces could improve heat transfer to advance the design of concentrated solar-power systems

Better surfaces could improve heat transfer to advance the design of concentrated solar-power systems

Technology News |
By eeNews Europe

Such an approach could be far less complex and more durable than approaches that enhance heat transfer through smaller patterning in the nanometer range. The new research also provides a theoretical framework for analyzing the behavior of such systems, pointing the way to even greater improvements.

The work was published this month in the journal Applied Physics Letters, in a paper co-authored by graduate student Kuang-Han Chu, postdoc Ryan Enright and Evelyn Wang, an associate professor of mechanical engineering.

“Heat dissipation is a major problem” in many fields, especially electronics, Wang said; the use of phase-change liquids such as boiling water to transfer heat away from a surface “has been an area of significant interest for many decades.” But until now, there has not been a good understanding of parameters that determine how different materials  – and especially surface texturing – might affect heat-transfer performance. “Because of the complexities of the phase-change process, it’s only recently that we have an ability to manipulate” surfaces to optimize the process, Wang says, thanks to advances in micro- and nanotechnology.

Chu said a major potential application is in server farms, where the need to keep many processors cool contributes significantly to energy costs. While this research analyzed the use of water for cooling, he added that the team “believes this research is generalizable, no matter what the fluid.”

The team concluded that the reason surface roughness greatly enhances heat transfer – more than doubling the maximum heat dissipation – is that it enhances capillary action at the surface, helping keep a line of vapor bubbles ‘pinned’ to the heat transfer surface, delaying the formation of a vapor layer that greatly reduces cooling.

To test the process, the researchers made a series of postage-stamp-sized silicon wafers with varying degrees of surface roughness, including some perfectly smooth samples for comparison. The degree of roughness is measured as the portion of the surface area that can come into contact with a liquid, as compared to a completely smooth surface. (For example, if you crumpled a piece of paper and then flattened it back out so that it covered an area half as large as the original sheet, that would represent a roughness of 2.)

The researchers found that systematically increasing roughness led to a proportional increase in heat-dissipation capability, regardless of the dimensions of the surface-roughening features. The results showed that a simple roughening of the surface improved heat transfer as much as the best previous techniques studied, which used a much more complex process to produce nanoscale patterns on the surface.

In addition to the experimental work, the team developed an analytical model that precisely matches the observed results. Researchers can now use that model to optimize surfaces for particular applications.

“There has been limited understanding of what kind of structures you need” for effective heat transfer, Wang said. This new research “serves as an important first step” toward such analysis.

Heat-transfer is almost entirely a function of a surface’s overall roughness, said Wang, and is based on the balance between various forces acting on the vapor bubbles that serve to dissipate heat: surface tension, momentum and buoyancy.

While the most immediate applications would likely be in high-performance electronic devices, and perhaps in concentrated solar-power systems.

The work was supported by the Battelle Memorial Institute and the Air Force Office of Scientific Research. The team received help in fabrication from the MIT Microsystems Technology Lab.

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles