
Blue LED light helps diabetics regulate blood glucose
Synthetic, light-sensitive, molecular switches can be utilized to control biochemical signaling processes in living cells. In a new study, a research team led by LMU Professor Dirk Trauner (Chemical Biology and Genetics) and his colleague Johannes Broichhagen, in collaboration with Prof. Guy Rutter and Dr. David Hodson at Imperial College London, have succeeded in incorporating such an optical switch into a sulfonylurea compound; a class of drugs which is widely used to regulate blood glucose levels in patients with Type 2 diabetes. Details of the new research appear in the journal Nature Communications.
Dirk Trauner explained: “We utilize synthetic molecular switches whose structure is altered by light in conjunction with the natural receptor proteins for specific signaling molecules. The chemical switches effectively make the receptor’s function dependent on exposure to light of a certain color. Light can be controlled with exquisite precision, which allows us to target the receptor of interest with very high specificity. In addition, the activating reaction is itself reversible.”
It should be possible to control the action of any drug by means of light, opening up novel therapeutic strategies for the treatment of chronic illnesses such as diabetes. In Type 2 diabetes, the amounts of insulin released are insufficient to compensate for reduced responsiveness to the hormone. Synthetic drugs called sulfonylureas, which promote secretion of insulin, are therefore used to treat the disease. The researchers have now synthesized a light-sensitive sulfonylurea, called JB253, and tested its ability to stimulate insulin release in laboratory experiments. They were able to show that pancreatic cells incubated with the compound secreted insulin only when exposed to blue light from a LED, which converts JB253 into a form that is recognized by its target protein, a potassium channel. Once the light is turned off, JB253 reverts to the inactive form and the effect on the potassium channel and downstream signaling pathways ceases.
The idea is that light-sensitive drugs could be administered in the form of a pill, and then be released or activated by irradiating a patch of skin with a blue LED. When the light is switched off the drug flips back into the inactive form. “We have a long way to go before it will be possible to use such a therapy in patients. It would, however, give better control over blood sugar levels during type 2 diabetes, and would reduce the incidence of side-effects, because the active agent is released only where it is required,” said Dr. Hodson of Imperial College London.
Reference
Optical control of insulin release using a photoswitchable sulfonylurea – Johannes Broichhagen, Matthias Schönberger, Simon C. Cork, James A. Frank, Piero Marchetti, Marco Bugliani, A. M. James Shapiro, Stefan Trapp, Guy A. Rutter, David J. Hodson & Dirk Trauner
Nature Communications 5, Article number: 5116 doi:10.1038/ncomms6116 Received 23 February 2014 Accepted 01 September 2014 Published 14 October 2014
Related articles and links:
News articles:
