
‘Brain inspired computing’ – two chips that use ions, rather than electrons
In a step toward nanofluidic-based neuromorphic – or brain-inspired – computing, EPFL engineers have succeeded in executing a logic operation by connecting two chips that use ions, rather than electrons, to process data
From the EPFL report
Memory, or the ability to store information in a readily accessible way, is an essential operation in computers and human brains. A key difference is that while brain information processing involves performing computations directly on stored data, computers shuttle data back and forth between a memory unit and a central processing unit (CPU). This inefficient separation (the von Neumann bottleneck) contributes to the rising energy cost of computers.
Since the 1970s, researchers have been working on the concept of a memristor (memory resistor); an electronic component that can, like a synapse, both compute and store data. But Aleksandra Radenovic in the Laboratory of Nanoscale Biology (LBEN) in EPFL’s School of Engineering set her sights on something even more ambitious: a functional nanofluidic memristive device that relies on ions, rather than electrons and their oppositely charged counterparts (holes). Such an approach would more closely mimic the brain’s own – much more energy efficient – way of processing information.
“Memristors have already been used to build electronic neural networks, but our goal is to build a nanofluidic neural network that takes advantage of changes in ion concentrations, similar to living organisms,” Radenovic says.
“We have fabricated a new nanofluidic device for memory applications that is significantly more scalable and much more performant than previous attempts,” says LBEN postdoctoral researcher Théo Emmerich. “This has enabled us, for the very first time, to connect two such ‘artificial synapses’, paving the way for the design of brain-inspired liquid hardware.”
…. follow the link above to read more
