Building better batteries

Building better batteries

Feature articles |
By Peter Clarke

The modern alchemist’s quest for longer battery life is more challenging than ever. Good battery design for the e-mobility industry is akin to concocting a powerful potion, with the right balance of chemicals to handle different applications and challenging environments. The battery also needs to pack a punch to provide extra mileage on the road.

Battery makers face intense competition in the electric vehicle (EV) battery market, which is poised to grow substantially between 2020 and 2024. While technology has reduced the cost of an average Li-ion EV battery by 80 percent over the past decade, the battery remains the most expensive part of the electric car. Bringing down this cost will help EVs win over more drivers.

What does the modern alchemist need to balance in formulating the ideal and affordable battery? The answer lies in understanding what causes the gaps between design goals and real-life performances. Creating the ideal cell chemistry requires an understanding of various parameters affecting battery performance, at the cell, module, and pack levels depending on the different aimed-for applications. 

To complicate matters, each battery cell exhibits different characteristics depending on their applications. In designing and testing batteries the battery cell design manager must consider how to juggle various test parameters for multiple cell types under development, with available test resources.

For instance, in EVs and hybrid EVs, fast charging and extended range are important hence the battery design must prioritise tests to achieve higher capacity, efficiency and energy density goals. To manage and meet these requirements efficiently, battery cell manufacturers need to anticipate the types of tests that must be carried out throughout the entire battery development chain. Furthermore, the rapidly evolving EV battery market also means manufacturers must adopt future-proof, design-for-test solutions to ensure attractive return on investments in their design and test solutions.

Next: Case in point

Recently, ElringKlinger AG[1], a global leading developer of automotive drive systems and volume manufacturer for battery components, decided to collaborate with Keysight Technologies to further accelerate the development of batteries. Their aim is to deliver highly efficient and reliable battery systems to their customers in a fast, consistent, and cost-efficient way.

ElringKlinger will test their cells to identify the most effective combination of cells for their targeted end-customer applications, using Keysight’s Scienlab Battery Test Solution.

Battery modules consisting of several of those cells are used to develop battery systems including a battery management system (BMS), thermal management, and necessary mechanical components.

In their use model, ElringKlinger established a highly customised turn-key laboratory that includes the full range of Keysight’s Scienlab Battery Test Systems, including safety environment for testing battery cells, modules, and packs.

Software – Key to Sanity and Success

While technology is helping EV batteries achieve greater energy density and longer life, the laboratories developing them are also getting bigger.

For many other smaller battery manufacturers with modest laboratory operations, it is possible to manually manage and coordinate the few test systems with rudimentary tools, like a spreadsheet.  In recent years, these battery makers find themselves with a “good problem” as their business expands rapidly, putting pressure on lab managers to find productive ways to manage workflows and efficiently coordinate testing assets.

This trend towards huge test labs with thousands of test channels presents new challenges:

Increased number of cell types under test, leading to demand for more test resources to fulfil higher testing volume.

Greater time to market pressure, with demand for more efficient battery life cycle testing.

Management of test data and projects across different sites.

In addition to these requirements, the battery test lab manager must ensure the devices under test (DUT) in this case, the battery cells, modules, and packs, can perform as designed in what is known as “time-synchronous” testing.

Next: parameters

Some common yet important parameters include:

Durability, range, and efficiency

Function, aging, environment, and performance

Compliance to industry standards, such as ISO, DIN EN, and SAE

Temperature behaviour and mechanical resistance

Electrochemical analysis

Multiply these parameters by the number of different customer DUTs, sometimes across different sites and it becomes obvious that the manual data tracking methods no longer suffice to help the battery laboratory managers.

The usage of Big Data, which first made inroads into the world of high-volume electronics manufacturing with the advent of Industry 4.0, is also picking up speed across the EV battery industry. Battery makers up-scaling their operations are working with solution providers like Keysight, using automation tools like the PathWave Lab Operations for Battery Test and battery analytics software like Energy Storage Discover to quickly set up their laboratory operations and deploy their test plans.

Both software’s form an integral ‘backplane’ to the entire battery development and test process. While tests are controlled by the Energy Storage Discover software, the cloud based PathWave Lab Operations for Battery Test allows visibility and management across the entire end-to-end lab workflow. Such a platform allows the lab manager to easily manage test orders, plan and optimise test capacities and sequences and share data for analysis more efficiently.

Next: Optimize

Optimising the Battery for Performance and Reliability

No matter how well the single battery cell is designed, its performance is dependent on its interconnection in the module and pack, and the real-world conditions of the electric vehicle. Battery health is affected by extreme temperatures, energy cycles (usage) and how fast it’s being charged. Smooth energy conversion at various charging interfaces, both onboard the vehicle and with external EV supply equipment (EVSE) are also important.

Holistic Battery Testing

EV power is determined by how battery cells, modules, and packs work together to provide better power and range. Even as the journey of the single cell starts from the design lab, each step of its development, manufacturing, and integration into the vehicle has multiple interfaces.

Holistic design and test at each step of this journey ensures safety and reliability for both the vehicle and its drivers and passengers, and these qualities will continue to provide economies of scale to make batteries more affordable.

The modern alchemists’ vision goes beyond enabling longer range for EVs. Ultimately, well-designed batteries will be at the heart of this global movement towards truly clean and renewable energy sources for our planet.

References: 1 – Press release: Keysight and ElringKlinger AG Collaborate to Advance E-mobility

Hwee Yng is with the automotive and energy industry marketing team at Keysight Technologies. Prior to her current role, she supported the Agilent/Keysight board and functional test team as communications integrator.

Related links and articles:

News articles:

ADI, Keysight team on OpenRAN

Keysight joins CharIN to boost Combined Charging System and DC fast charging

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles