Can clay-based electrolyte help batteries perform in harsh environments?

Technology News |
By eeNews Europe

The lithium-ion chemistry-based battery is robust enough to supply stable electrochemical power in temperatures up to 120°C. The batteries could be used in space, defense and oil and gas applications.

Chemist Pulickel Ajayan and his colleagues at Rice and at Wayne State University in Detroit have described the material in a report published in the American Chemical Society journal ACS Applied Materials and Interfaces.

The discovery depends on the malleable qualities of bentonite clay and room-temperature ionic liquids that serve as both a separator and an electrolyte system and provide a conductive path between a battery’s anode and cathode.

“Clay naturally has a lot of moisture in it, and that’s not a problem when you’re doing supercapacitors,” said Kaushik Kalaga, a graduate student in Ajayan’s lab and lead author of the new study. “But a battery has to have a lithium-ion conductive species in the electrolyte to conduct lithium ions from the cathode or anode, or vice versa, when you charge and discharge.

“Lithium is very reactive with water, so our first challenge was to eliminate water from the clay while keeping its structure intact,” explained Kalaga.

Kalaga and his team started by baking commercial clay particles at 650°C for an hour to dry them out. They then combined a room-temperature ionic liquid and lithium salt and mixed them into the clay in an oxygen-free glove box. The liquefied salt acts as a source of lithium ions that conduct through the electrolyte to the electrodes.

The researchers spread the resulting peanut butter-like slurry between lithium metal electrodes and encapsulated them in coin-shaped batteries for testing at various temperatures.

Conventional organic electrolytes cannot be used in batteries over 60°C, due to their low boiling temperature; the vapors that form beyond 80°C can lead to an explosion, Kalaga said. Batteries that have solid-state electrolytes work in high temperatures, but the electrolytes do not connect as well with electrodes, which hurts performance.

The researchers built their composite electrolyte to be tough and conductive and still present the maximum surface area to electrodes to provide a solid path for current.

The units proved able to deliver current at high temperatures with a stable voltage window of 3 volts over 120 charge-discharge cycles and featured both the thermal stability of solid-state electrolytes and the wetting properties of liquid electrolytes, assuring good contact with the electrodes. The voltage window is the range between which the electrolyte is stable and is not chemically degraded.

Batteries with clay-based electrolyte/separators were tested at up to 120°C and showed strong performance over 120 charge-discharge cycles, according to scientists at Rice University. Graphic by Kaushik Malaga

“It’s able to produce pretty good performance at room temperature, but it gets better at higher temperatures,” Kalaga said. “The clay-based electrolyte gets less viscous but still retains its consistency at least to 150°C. The next step is to push the limits further.”

Related articles and links:

News articles:

Light-harvesting nanoparticles power solar water-splitting technology

Electrode discovery points to simpler solar cell production method

Boron-infused graphene helps quadruple performance of microsupercapacitor


Linked Articles