MENU

Cheaper batteries: Can potassium provide the solution?

Cheaper batteries: Can potassium provide the solution?

Technology News |
By eeNews Europe



The discovery paves the way for the development of a potassium-ion battery based on materials that are far more abundant and less costly than their ubiquitous lithium-ion battery rivals.

The research shows that a potassium-ion battery has been shown to be possible. And the last time this possibility was explored was when Herbert Hoover was president, the Great Depression was in full swing and the Charles Lindbergh baby kidnapping was the big news story of the year – 1932.

“For decades, people have assumed that potassium couldn’t work with graphite or other bulk carbon anodes in a battery,” said Xiulei (David) Ji, the lead author of the study and an assistant professor of chemistry in the College of Science at Oregon State University.

“That assumption is incorrect,” claimed Ji. “It’s really shocking that no one ever reported on this issue for 83 years.”

The Journal of the American Chemical Society published the findings from this discovery, which was supported by the U.S. Department of Energy and done in collaboration with OSU researchers Zelang Jian and Wei Luo. A patent is also pending on the new technology.

The findings open some new alternatives to batteries that can work with well-established and inexpensive graphite as the anode, or high-energy reservoir of electrons. Lithium can do that, as the charge carrier whose ions migrate into the graphite and create an electrical current.

Aside from its ability to work well with a carbon anode, however, lithium is quite rare, found in only 0.0017 percent, by weight, of the Earth’s crust. Because of that it is comparatively expensive, and it is difficult to recycle. Researchers have yet to duplicate its performance with less costly and more readily available materials, such as sodium, magnesium, or potassium.


“The cost-related problems with lithium are sufficient that you won’t really gain much with economies of scale,” said Ji. “With most products, as you make more of them, the cost goes down. With lithium the reverse may be true in the near future. So we have to find alternatives.”

The alternative may be potassium, which is 880 times more abundant in the Earth’s crust than lithium. The findings show that it can work effectively with graphite or soft carbon in the anode of an electrochemical battery. Right now, batteries based on this approach do not have performance that equals those of lithium-ion batteries, but improvements in technology should narrow the gap.

“It’s safe to say that the energy density of a potassium-ion battery may never exceed that of lithium-ion batteries,” said Ji. “But they may provide a long cycling life, a high power density, a lot lower cost, and be ready to take the advantage of the existing manufacturing processes of carbon anode materials.”

Related articles and links:

www.oregonstate.edu

News articles:

Are mushrooms the answer to lithium-ion battery degradation?

Can ‘designer carbon’ boost battery and supercapacitor performance?

World’s first solar battery promises cost savings

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s