MENU

Colloidal quantum dots promise cheaper, lighter solar cells

Colloidal quantum dots promise cheaper, lighter solar cells

Technology News |
By eeNews Europe



The new form of solid, stable light-sensitive nanoparticles, called colloidal quantum dots, could lead to cheaper and more flexible solar cells, as well as better gas sensors, infrared lasers, infrared light emitting diodes and more. The work, led by post-doctoral researcher Zhijun Ning and Professor Ted Sargent, is published in Nature Materials.

Collecting sunlight using the colloidal quantum dots depends on two types of semiconductors: n-type, which are rich in electrons; and p-type, which are poor in electrons. When exposed to air, n-type materials bind to oxygen atoms, give up their electrons, and turn into p-type. Ning and colleagues modelled and demonstrated a new colloidal quantum dot n-type material that does not bind oxygen when exposed to air.

Maintaining stable n- and p-type layers simultaneously not only boosts the efficiency of light absorption, it opens up a world of new optoelectronic devices that capitalize on the best properties of both light and electricity and could lead to the development of more sophisticated weather satellites, remote controllers, satellite communication, or pollution detectors.

“This is a material innovation, that’s the first part, and with this new material we can build new device structures,” said Ning. “Iodide is almost a perfect ligand for these quantum solar cells with both high efficiency and air stability – no one has shown that before.”

Ning’s new hybrid n- and p-type material achieved solar power conversion efficiency up to eight per cent which is among the best results reported to date.

But improved performance is just a start for this new quantum-dot-based solar cell architecture. The dots could be mixed into inks and painted or printed onto thin, flexible surfaces, such as roofing shingles which would lower the cost and accessibility of solar power for millions of people.

“The field of colloidal quantum dot photovoltaics requires continued improvement in absolute performance, or power conversion efficiency,” said Sargent. “The field has moved fast, and keeps moving fast, but we need to work toward bringing performance to commercially compelling levels.”

This research was conducted in collaboration with Dalhousie University, King Abdullah University of Science and Technology and Huazhong University of Science and Technology.

Related articles and links:

www.utoronto.ca

News articles:

Photochemical reaction improves efficiency of harvesting solar energy

Quantum-dot photovoltaics set new efficiency record

Quantum dot solar concentrator opens energy harvesting window

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s