MENU

Conductive ink advance opens up wearable device opportunities

Technology News |
By eeNews Europe

The ink will enable electronic apparel such as sportswear and underwear incorporating sensing devices for measuring a range of biological indicators such as heart rate and muscle contraction.

Current printed electronics, such as transistors, light-emitting diodes and solar panels, can be printed on plastic or paper substrates, but these substrates tend to be rigid or hard. Until now it has proved difficult to make an ink that is both highly conductive and elastic without a complicated multi-step printing process.

Prof. Takao Someya’s research group at the University of Tokyo’s Graduate School of Engineering has developed an elastic conducting ink that is easily printed on textiles and patterned in a single printing step. The ink is comprised of silver flakes, organic solvent, fluorine rubber and fluorine surfactant. The ink exhibited high conductivity even when it was stretched to more than three times its original length, which marks the highest value reported for stretchable conductors that can be extended to more than two and a half times their original length.

Using this new ink, the group created a wrist-band muscle activity sensor by printing an elastic conductor on a sportswear material and combining it with an organic transistor amplifier circuit. This sensor can measure muscle activity by detecting muscle electrical potentials over an area of 4×4 square centimeters with nine electrodes placed 2 cm apart in a 3×3 grid.

Electrodes, wires, and via holes can be printed by a single step printing process. The muscle activity sensor was produced by printing once on each side of the material’s surface. Image: 2015 Someya Laboratory


"Our team aims to develop comfortable wearable devices. This ink was developed as part of this endeavor," explained Someya. "The biggest challenge was obtaining high conductivity and stretchability with a simple one-step printing process. We were able to achieve this by use of a surfactant that allowed the silver flakes to self-assemble at the surface of the printed pattern, ensuring high conductivity."

Related articles and links:

www.u-tokyo.ac.jp

News articles:

‘Electronic tattoos’ – Are QLEDs the ultimate wearable devices?

Is silicon quantum dot-based white-blue LED the future for lighting?

Stretchable optical circuit enables wearable body sensor networks


Share:

Linked Articles
eeNews Europe
10s