Critical communications component out of flexible wooden fibre

Critical communications component out of flexible wooden fibre

Technology News |
By Julien Happich

In a paper published in the journal Nature Communications, Zhenqiang “Jack” Ma, a University of Wisconsin-Madison professor of electrical and computer engineering, explains how he and his collaborators constructed a functional microwave amplifier circuit on a substrate of cellulose nanofibril paper, a wood product.

Microwave components, which are used in wireless communication, have proved difficult to produce in a flexible form and are typically constructed on integrated semiconductor chips or printed on circuit boards. But flexible versions, including thin-film transistors and other components Ma has been creating for more than a decade, could have widespread applications in wearable devices, drones and as part of large-area microwave arrays used in 5G wireless networks and advanced communication systems.

Previous attempts to produce flexible microwave amplifiers used rigid semiconductor-based integrated circuits that were thinned down and moved to flexible substrates, a cost-prohibitive approach.

In the new amplifier, Ma and his colleagues began with cellulose nanofibril paper as the substrate. In recent years, Ma has collaborated with researchers from the U.S. Department of Agriculture Forest Products Laboratory in Madison, and from the Wisconsin Institute for Discovery to assess the feasibility of using the material as a substrate for flexible electronic circuits. The paper is made by breaking wood fiber down into nanoscale fibrils, or tiny slender fibres, then recombining them to produce a strong, flexible, transparent and biodegradable film.

And, instead of layering the entire wood substrate with expensive gallium nitride, currently the highest performing microwave transistor material, the team used just a speck of the compound.

“We have a new strategy here,” says Ma, whose work was supported by the U.S. Endowment for Forestry and Communities. “We use a tiny bead of the expensive substance, 500 microns by 500 microns, and the rest is wood. Compared to the gallium nitride, the cost of the wood is essentially nothing. The final outcome is an amplifier that works very well.”

The flexible circuit can output 10 milliwatts of power beyond 5 gigahertz, and the cellulose nanofibril substrate is just as compatible with the microwave components as polyethylene substrates. What’s more, the entire circuit easily decomposes or burns, essentially leaving behind no electronic waste. Ma and his team demonstrate that setting the chip alight with a candle only leaves behind a small smattering of ash in just a few seconds. The substrate is not just for microwave applications, but could be useful for all sorts of flexible electronic components. And that could make a big difference for the environment.

“If you look at your own house, there are probably lots of old electronics,” Ma says. “There are TVs, computer monitors, phones — all full of electronic circuits. You can’t do much with them and that generates a lot of waste. We can replace a lot of existing components with these types of circuits.”

University of Wisconsin-Madison –

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles