
Degradation discovery helps extend solar cell lifetimes
Key factors for creating cost-efficient solar cells include fabrication cost, efficiency and lifetime of the cells. Professor Yabing Qi and members of his unit have investigated the cause of degradation of a high efficiency solar cell.
The discovery has been published in The Journal of Physical Chemistry Letters.
Solid state dye-sensitized solar cells have shown their potential in achieving high efficiency with a low cost of fabrication. Degradation of these cells, which shortens lifespan, is not well understood. To investigate the causes of degradation, Prof. Qi and colleagues focused on a material widely used in these solar cells, which is abbreviated spiro-MeOTAD. This material is used in the upper-most layer of the solar cell and comes into contact with the outside environment which is a likely candidate to be susceptible to degradation from many possible sources including air exposure, continuous light irradiation, elevated temperature and dust.
The most likely source of degradation was thought to be photo-oxidation, which is a chemical process caused by exposure to both air and light. Prof. Qi and colleagues tested whether this process was occurring. The researchers showed that there was no detectable photo-oxidation, or chemical degradation, of spiro-MeOTAD even after exposure for a few days. The researchers next looked at other possible degradation mechanisms due to exposure to air alone. Spiro-MeOTAD is an amorphous substance, which is the property that makes it useful in these solar cells. However, this property could also cause a problem in that molecules from the air may easily diffuse, or freely pass into, the spiro-MeOTAD. These air molecules would then become impurities in the solar cells, leading to degradation. After a detailed analysis, the researchers determined this was precisely what was occurring; foreign air molecules were causing degradation of the spiro-MeOTAD layer, resulting in a drop in solar cell efficiency.

Air exposure causes incorporation of gas molecules into the
spiro-MeOTAD layer
The next step is to find a material to encapsulate and protect the spiro-MeOTAD layer from air exposure and prevent diffusion and the subsequent degradation from occurring. Prof. Qi explained: “If we can find a method of low cost encapsulation, it is possible, for the first time, to achieve low cost, high efficiency and long lifespans in the same cell.”
"This technology is compatible with the coating technology of the flexible transparent electrodes that we are also working on, meaning we can use this research for fabrication of large area, transparent, flexible solar cells,” added Prof. Qi.
The research work was performed in collaboration with Professor Antoine Kahn and his research group at Princeton University.
Reference
Luis K. Ono, Philip Schulz, James J. Endres, Gueorgui O. Nikiforov, Yuichi Kato, Antoine Kahn, and Yabing Qi, Air-Exposure-Induced Gas-Molecule Incorporation into Spiro-MeOTAD Films, J. Phys. Chem. Lett., 2014, 5, pp 1374–1379, DOI: 10.1021/jz500414mhttps://pubs.acs.org/doi/abs/10.1021/jz500414m
Related articles and links:
www.oist.jp
News articles:
Orientation of organic solar cell molecules improves efficiency
Material breakthrough speeds production of cheaper solar cells
Thin-film CIS cell claims conversion efficiency world record
Solar cell efficiency – Is it all in the mix?