MENU

Disordered crystals offer boost for magnesium battery tech

Disordered crystals offer boost for magnesium battery tech

Technology News |
By Nick Flaherty



Working with a team at the University of Illinois at Chicago, the researchers developed a scalable method for making a material that can reversibly store magnesium ions at high-voltage, the defining feature of a cathode. While it is at an early stage, the researchers say it is a significant development in moving towards magnesium-based batteries. To date, very few inorganic materials have shown reversible magnesium removal and insertion, which is key for the magnesium battery to function.

“Lithium-ion technology is reaching the boundary of its capability, so it’s important to look for other chemistries that will allow us to build batteries with a bigger storage capacity and a slimmer design,” said Dr Ian Johnson in UCL’s Chemistry department. “Magnesium battery technology has been championed as a possible solution to provide longer-lasting phone and electric car batteries, but getting a practical material to use as a cathode has been a challenge.”

One factor limiting lithium-ion batteries is the anode. Low-capacity carbon anodes have to be used in lithium-ion batteries for safety reasons, as the use of pure lithium metal anodes can cause dangerous short circuits and fires. In contrast, magnesium metal anodes are much safer, so partnering magnesium metal with a functioning cathode material would make a battery smaller and store more energy. Previous research using computational models predicted that magnesium chromium oxide (MgCr2O4) could be a promising candidate for Mg battery cathodes.

The UCL researchers produced a ~5 nm, disordered magnesium chromium oxide material in a very rapid and relatively low temperature reaction. The team at Chicago then compared its magnesium activity with a conventional, ordered magnesium chromium oxide material ~7 nm wide. 

They used a range of different techniques including X-ray diffraction and X-ray absorption spectroscopy to see the structural and chemical changes when the two materials were tested for magnesium activity in a cell.


The two types of crystals behaved very differently, with the disordered particles displaying reversible magnesium extraction and insertion, compared to the absence of such activity in larger, ordered crystals.

“This suggests the future of batteries might lie in disordered and unconventional structures, which is an exciting prospect and one we’ve not explored before as usually disorder gives rise to issues in battery materials. It highlights the importance of seeing if other structurally defective materials might give further opportunities for reversible battery chemistry,” said Professor Jawwad Darr at UCL. “We see increasing the surface area and including disorder in the crystal structure offers novel avenues for important chemistry to take place compared to ordered crystals.

www.ucl.ac.uk

Related stories:

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s