Draco mission made for destruction
Cette publication existe aussi en Français
ESA is preparing the Destructive Reentry Assessment Container Object (Draco) mission that will collect unique measurements during an actual reentry and breakup of a satellite from the inside
Over the nearly 70 years of spaceflight, about 10 000 intact satellites and rocket bodies have reentered the atmosphere with many more to follow. Yet for such a ubiquitous event, we still lack a clear view on what actually happens to a satellite during its fiery last moments.
A capsule especially designed to survive the destruction will transmit the valuable telemetry shortly after.
Deimos has signed a first contract worth €3 million for the start of the development of the satellite. The Draco mission is a small and fast design-to-launch Space Safety mission, with the launch scheduled for 2027.
Reentries prevent space debris
To keep Earth’s valuable orbits clean and prevent the creation of more space debris, it is important to remove a satellite quickly from orbit after its mission comes to an end. ESA is committed to its ambitious Zero Debris approach, stopping the further creation of space debris by 2030.
Satellites can be built for controlled reentries, or with extra effort some may go through assisted reentries or targeted reentries. Yet it is more efficient to meet Space Debris Mitigation Guidelines by being ‘designed for demise’ from the start and disintegrate entirely during reentry.
“Reentry science is an essential element of the design for demise efforts. We need to gain more insight into what happens when satellites burn up in the atmosphere as well as validate our re-entry models,” says Holger Krag, ESA Head of Space Safety.
“That’s why the unique data collected by Draco will help guide the development of new technologies to build more demisable satellites by 2030.”
Another important element of reentries is their effect on the atmosphere itself, a field of research growing in importance as the number of both launches and reentries rise rapidly. Studying how parts and particles of the spacecraft materials wear and tear off in the higher atmosphere can provide insights into which by-products are created and where. This enables scientists to learn about the environment impacts, which in turn leads to more sustainable designs in the future.