MENU

DSP IP boosts automotive radar/lidar performance

DSP IP boosts automotive radar/lidar performance

New Products |
By Christoph Hammerschmidt



Cadence Tensilica’s ConnX B20 DSP provides a faster and more power-efficient solution for the automotive and, by the way, also for 5G communications markets, including next-generation radar, lidar, vehicle-to-everything (V2X), user equipment (UE)/infrastructure and IoT applications. With an enhanced instruction set architecture (ISA) and clock-speed increase, the ConnX B20 DSP processes the radar/lidar processing chain up to 10X faster and of parts of the communication processing chain up to 30X faster compared to the existing Tensilica ConnX BBE32EP DSP. Further expanding the ConnX family, Cadence has introduced the ConnX B10 DSP, which delivers half the vector width of the ConnX B20 DSP for applications requiring less parallelism.

Both the trend toward higher resolution imaging radar with more antennas for autonomous driving applications and the emergence of 5G mobile equipment and infrastructure demand significantly more processing power. In addition, consumer/industrial radar, automotive V2X and 5G IoT applications all require low-energy processing solutions.

Up to ten times faster processing of lidar and radar:
The Tensilica ConnX B20 DSP IP

Software compatible with the rest of the ConnX DSP family (the ConnX BBE16/32/64EP), the ConnX B20 DSP has a 512-bit vector width up to 128 MACs, can load 1024 bits of data each cycle and achieves 1.4GHz or greater frequency in 16nm process technology. Customers have a variety of algorithm acceleration options to reduce cycle counts, including higher precision with either 32-bit fixed-point operations (including operations to optimize MAC, FFT and FIR) with native complex support, or single-/half-precision vector floating-point (VFPU) operations with half precision at 2X the single-precision throughput.


This flexibility allows customers to choose higher precision only when needed. In addition, an extended VFPU option enables support for complex floating-point operations and doubles the real floating-point operations at the same vector width typically used in the front end of the radar processing chain. The communications option accelerates forward-error correction (FEC) in lower bit-rate communication applications seeking software-defined radio solutions.

“Autonomous driving requires high-resolution sensing to distinguish separate objects at a distance. The addition of more antennas enables increased radar resolution, which requires a corresponding increase in DSP performance,” said Mike Demler, senior analyst at the Linley Group. “Lidar systems have the necessary resolution but are too expensive for wide deployment today. However, new solid-state implementations are changing that and need some DSP programmability as the algorithms and designs mature. Tensilica ConnX DSPs have been used in multiple automotive sensor and communications applications, and the new ConnX B20 and B10 DSPs offer new levels of performance and energy efficiency that are required for next-generation devices.”

General availability for both the ConnX B20 and B10 DSPs is planned for the second quarter of 2019.

More information. https://www.cadence.com/go/connxb20.

 

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s