Dual additive boost for low cost lithium ion capacitors

Dual additive boost for low cost lithium ion capacitors

Technology News |
By Nick Flaherty

Researchers from l’Institut des matériaux Jean Rouxel (CNRS/Université de Nantes), in collaboration with Münster Electrochemical Energy Technology (University of Münster, Germany), combined two additives instead of one to support the production of lithium ion capacitors, boosting the energy density.

There are two main energy storage techniques in renewable energy and e-mobility. Lithium-ion batteries have the advantage of large storage capacity while capacitors have less capacity but can charge and uncharge very rapidly a great number of times. Lithium-ion capacitors (LIC) combine the best of both worlds.

The materials that make up lithium-ion capacitors do not contain lithium ions, unlike batteries. It is therefore necessary to proceed with a prelithiation stage in order to add them, so that the device can function.

Two strategies are used today: either one of the capacitor’s constituent materials is prelithiated before its integration, or an additive high in lithium ions will redistribute them among the capacitor’s materials during the first charge. Yet these methods are costly and complex, and can diminish the device’s capacity.

The majority of prelithiation additives available deteriorate when in contact with the air and/or the solvents used to manufacture lithium ion capacitors. This means that even though some of the solutions that have been proposed function today, there is no approach that is high-performance, sturdy, simple, and inexpensive.

The researchers met this challenge by using not just one but two additives coupled through consecutive chemical reactions. Their analysis shows that the primary barrier for earlier approaches was their use of a single additive, which had to not only provide lithium ions and electrons, but also meet all of the conditions of price, chemical stability, and performance.

The use of two additives each with a specific role, with one providing lithium ions and the other electrons, offers much greater latitude, for they can be selected independently for their price, chemical properties, and performance. When a lithium-ion capacitor is charging, the first additive (pyrene, naturally present in certain types of coal) releases electrons and protons. The second additive, Li3PO4 (mass produced in the glass industry, for instance), captures these protons, and in turn releases lithium ions that are then available for prelithiation.

An additional advantage of this approach to building lithium ion capacitors is that after prelithiation, the residue of one of the two additives used, pyrene, contributes to the storage of charges, thereby increasing the quantity of electrical energy stored in the device. The efficiency and versatility offered by this new approach opens the way for an inexpensive solution for prelithiation, resulting in lithium-ion capacitors that can store more energy. The breaking of this technological barrier should therefore enable a quicker commercialisation of these devices.



Linked Articles