Edge AI training on microcontrollers boosts IoT predictive maintenance

Edge AI training on microcontrollers boosts IoT predictive maintenance

Technology News |
By Nick Flaherty

One Tech (Dallas, TX) has ported its edge AI unsupervised training technology to microcontrollers to boost analysis in the Internet of Things.

MicroAI Atom is designed to be embedded on microcontroller units (MCUs) and can now train and run AI models directly at the endpoint. This enables silicon manufacturers, original equipment manufacturers (OEMs), smart device manufacturers and smart device owners to reduce the costs of bringing intelligence to the edge and endpoint by at least 80 percent. Enabling unsupervised training on a microcontroller at the nertwork edge allows functions such as predictive maintenance that were previously only available on microprocessors. This differs from the AI accelerators on microcontrollers that run an inference engine that has already been trained.

“This is a groundbreaking phase for the industry. By bringing intelligence to endpoints, sensors and equipment at the network edge, device and equipment manufacturers, along with the owners of these assets, can now have AI-driven intelligence on a low-cost piece of hardware. Training and running a model on an MCU has not been seen before in the industry,” said Yasser Khan, CEO of One Tech.

“AI is shrinking and can run these advanced algorithms. It allows AI and predictive maintenance to move from MPU-based devices to MCU-based devices, with a small footprint and significantly lower price point. Companies in industries such as manufacturing needed this technology yesterday. It is the next evolution of IoT and AI at the network edge.”

Early iterations of IoT solutions primarily consisted of deploying sensors that would pull IoT data points for monitoring assets that the sensors were attached to. This resulted in an influx of data that needed to be further processed and acted upon with edge AI. Now the need for processing IoT data locally to enable automated action is key for IoT deployments, moving from setting static thresholds that would trigger events when the threshold was met or exceeded to creating dynamic thresholds.

“AI models have been largely trained in GPU server environments in the cloud,” said Khan. “With ONE Tech’s MicroAI, the early versions were designed to train and run in MPU environments. Today, ONE Tech is delivering the ability to train and run AI Models directly in MCU environments.”

MicroAI is a machine learning multi-dimensional behavioural algorithm that runs recursive analysis. It runs directly on a targeted machine or IoT device and allows enterprises to reduce unexpected downtimes associated with maintenance issues and cyberattacks. Unlike traditional AI that originates or resides only in the cloud, MicroAI is configured and trained on the network edge.

Related edge AI articles 

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles