Embedded optical sensors give robots a lighter touch

Embedded optical sensors give robots a lighter touch

Technology News |
By eeNews Europe

By using fiber optics, the researchers were able to embed 14 strain sensors into each of the fingers in the robotic hand, giving it the ability to determine where its
fingertips are in contact and to detect forces of less than a tenth of a newton. A new stretchable optical sensing material potentially could be used in a soft robotic skin to provide even more feedback.

“If you want robots to work autonomously and to react safely to unexpected forces in everyday environments, you need robotic hands that have more sensors than is typical today,” said Yong-Lae Park, assistant professor of robotics. “Human skin contains thousands of tactile sensory units only in the fingertip and a spider has hundreds of mechanoreceptors on each leg, but even a state-of-the-art humanoid such as NASA’s Robonaut has only 42 sensors in its hand and wrist.”

The new stretchable optical sensor could be used in a soft robotic skin to detect contact and measure force.

Adding conventional pressure or force sensors is problematic because wiring can be complicated, prone to breaking and susceptible to interference from electric motors and other electromagnetic devices. But a single optical fiber can contain several sensors; all of the sensors in each of the fingers of the CMU hand are connected with four fibers, although, theoretically, a single fiber could do the job, Park said. And the optical sensors are impervious to electromagnetic interference.

The Carnegie Mellon researchers will discuss the robotic hand, developed together with researchers at Intelligent Fiber Optic Systems Corp., with support from NASA,
September 29, 2015 at the IEEE International Conference on Intelligent Robots and Systems, IROS 2015, in Hamburg, Germany.

“If you want robots to work autonomously and to react safely to unexpected forces in everyday environments, you need robotic hands that have more sensors than is typical today.” explained Yong-Lae Park

Industrial robots, working in a controlled environment where people do not venture, are capable of precise manipulation with only limited sensors. But as roboticists at CMU and elsewhere work to develop soft robots that can interact routinely and safely with humans, increased attention to tactile and force sensing is essential, suggested Park.

Each of the fingers on the robotic hand mimic the skeletal structure of a human finger, with a fingertip, middle node and base node connected by joints. The skeletal ‘bones’ are 3-D-printed hard plastic and incorporate eight sensors for detecting force. Each of the three sections is covered with a soft silicone rubber skin embedded

with a total of six sensors that detect where contact has been made. A single active tendon works to bend the finger, while a passive elastic tendon provides opposing force to straighten the finger.

The hand, developed with mechanical engineering students Leo Jiang and Kevin Low, incorporates commercially available fiber Bragg grating (FBG) sensors, which detect strain by measuring shifts in the wavelength of light reflected by the optical fiber.

Despite their advantages, conventional optical sensors do not stretch much – glass fibers stretch hardly at all and even polymer fibers stretch typically only 20-25 percent, Park noted. That is a limiting factor in a device such as a hand, where a wide range of motion is essential. Park has previously developed highly stretchable microfluidic soft sensors – membranes that measure strain via liquid-conductor-filled channels – but they are difficult to make and can cause a mess if the liquid leaks out.

So Park, working with mechanical engineering students Celeste To from CMU and Tess Lee Hellebrekers from the University of Texas, invented a highly stretchable and flexible optical sensor, using a combination of commercially available silicone rubbers. These soft waveguides are lined with reflective gold; as the silicone is
stretched, cracks develop in the reflective layer, allowing light to escape. By measuring the loss of light, the researchers are able to calculate strain or other

Park said this type of flexible optical sensor could be incorporated into soft skins. Such a skin would not only be able to detect contact, as is the case with the soft components in the CMU hand, but also measure force.

Related articles and links:

News articles:

Circularly polarized light detector on a silicon chip

Wireless brain sensor begins benchtop preclinical testing

Head impact sensors prove too slow to measure sporting concussions

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles