MENU

EU’s PLAT4M project has created a European supply chain in silicon photonics

EU’s PLAT4M project has created a European supply chain in silicon photonics

Technology News |
By Graham Prophet



Research body Leti (Grenoble, France) has announced that the European FP7 project “PLAT4M” has now been completed with results that exceeded expectations.

 

Si photonics has long been expected to bring progress in data transmission in many sectors; it is also one of the most promising industrial-production candidates because of its potential for large-scale and low-cost production capability in existing CMOS foundries.

 

The European Commission launched the 15-member PLAT4M project in 2012 to build a Si photonics supply chain in Europe that would speed industrialization of the technology by enabling its seamless transition to commercial production.

 

The main objective of PLAT4M was to advance existing silicon photonics research foundries and seamlessly transition to pilot line operation, and industrial manufacturing, of products based on silicon photonics. The supply chain is based on three different but complementary technology platforms at Leti, STMicroelectronics and imec.

 

Leti’s 8,500m2 cleanroom facility includes a 200 mm pilot line that enables fabrication of passives, detectors, modulators and integrated lasers with a focus on high-bandwidth devices. The project team developed a new Si-photonic platform based on a 310 nm silicon film on top of an 800 nm buried oxide (BOX) on a high-resistivity silicon substrate. Since the targeted applications for the project were O-band transceivers and receivers, most of the developed devices are suitable for 1310 nm operations.

 

CEA-LETI has developed 3 PDKs (process design kits)which are dedicated to Multi Project Wafers (MPW) runs on this silicon photonics technology, which is now offered via the brokers CMP and Europractice. Moreover, III-V Lab has designed and co-fabricated a state-of-the-art integrated hybrid III-V/Si transmitter using a wafer bonding technique on this platform.

 

STMicroelectronics, the first 300mm wafer silicon photonics device manufacturer, is a key solution provider for 100 Gbps transceiver products since 2016. In parallel to its industrial activity, during the PLAT4M project ST developed another silicon photonics technology aimed at generating and nurturing further application specific industrial nodes. This technology platform creates an advanced photonic nanoscale environment, and combines state-of-the-art CMOS foundry tools with the flexibility necessary to support R&D efforts. Strong collaboration with research partners such as CEA LETI and University Paris Sud have been devoted to advanced studies in power consumption management, optical excess loss reduction and higher data-rate transmissions using complex modulation formats, signal multiplexing and higher Baud-rate devices. With R&D exploration that goes as far as core-to-core optical interposers, ST has also evaluated notions of device and circuit footprints toward Large System Integration (LSI).

 

In the context of PLAT4M, the participants chose a 4×25G transceiver as a Wavelength Division Multiplexing (WDM) data-communication demonstrator to validate both LETI and ST R&D platforms. The device functionalities were evaluated for compatibility with the 100GBase-LR4 standard, implying a signal transmission over four channels, spaced by 800 GHz around 1310 nm window, one fibre out and one fibre in.

 

imec; In the course of the PLAT4M project imec has consolidated and further developed its ISIPP25G silicon photonics technology platform using its 200 mm pilot line facilities located in Leuven to support industrial prototyping for various applications and markets. The imec platform component portfolio has been expanded to specific devices for sensing and high power free-space applications. imec’s technology is supporting state-of-the-art modulation and detection at 50 Gb/sec and beyond with a variety of modulator options (GeSi EAM, Si MZM, Si MRM) now offered under its ISIPP50G technology along with both edge and surface fibre coupling technology and a library of O-Band and C-Band high quality passive components.

 

The technology is accessible through imec’s PDK, which is supported by software tools from several vendors including project partner PhoeniX Software. In collaboration with Mentor, a Siemens business, imec has also explored LVS verifications to reduce design errors and performed litho-friendly design analysis to improve the patterning predictability. Using the imec technology with new processing steps, TNO has demonstrated a multi-channel ring resonator based sensor system. Polytec demonstrated the operation of Multichannel Laser Doppler Vibrometer. THALES has demonstrated an integrated FMCW LiDAR system with eight switchable output channels, enabling to scanning directions as well as a coherent beam combiner with 16 beams with linear operation up to a maximum input power of 26 dBm. The thermal phase-shifter elements achieved a power efficiency of 10 mW for a p-phase shift.

 

Finally, imec has demonstrated new advances in its technology such as a very low loss silicon waveguide technology (~0.6 dB/cm for a 220 x 450 nm waveguide) applying leading edge CMOS patterning technology developed in its 300 mm pilot line with immersion lithography. It has also demonstrated a further reduction of thermal phase-shifter elements down to 4 mW for a p-phase shift.

 

The PLAT4M project has led to a qualitative leap of the design flow for silicon photonics, allowing the photonics community to design more complex and more robust circuits. Mentor and PhoeniX Software have worked closely together on an integrated electronics/photonics co-design workflow. This has been accomplished by building on existing tool-sets wherever possible and developing new technologies when required.

 

The supply chain includes EDA solutions such as Mentor’s Pyxis and Calibre, which were extended to “understand” photonics. Interfaces were developed between these tools and the OptoDesigner Photonic IC design solution from PhoeniX Software to create integrated design flows using the best practices from both photonics and electronics design. In addition, process design kit elements were developed for Mentor’s Calibre DRC, Calibre LVS, and Pyxis tools, incorporating new components, added models and fabrication information.

 

Packaging played a key role in the development of the project demonstrators. The skills and processes developed by Aifotec and Tyndall, advanced the development of the Silicon Photonic packaging toolkit. This toolkit establishes standardised packaging processes for optical fibres, active devices, electronic components and thermo-mechanical systems to ensure that PICs can be more easily packaged in a timely and cost-effective way. A design rule document was made available through EuroPractice by Tyndall and also implemented into PDKs for OptoDesigner.

 

Project site; https://plat4m-fp7.eu/

 

 

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s