First optimized test and debug solution for AURIX multi-core MCUs
The Universal Debug Engine (UDE) 3.3 is a result of the very early and close cooperation with Infineon Technologies and several key customers to support the first AURIX MCUs. The TC275T contains three TriCore processor cores (version 1.6), with two cores optimized for maximum performance and can execute up to three instructions in one cycle at a maximum clock frequency of 200 MHz. With the third core, a high-efficiency TriCore CPU 1.6P, lowest possible power consumption and an efficient data exchange with the peripherals are the most important factors. It can execute a maximum of one instruction per cycle and is currently clocked at a maximum of 200 MHz.
The UDE 3.3 allows management and control of the various TriCore-CPUs within one user interface. This is supported by a flexible multicore program loader that enables the loading of program code and data as well as symbol information separately for each core. Management of the cores is carried out by a multicore run control manager, which offers a definition of core groups. This provides flexible control of the run-time behavior of the complex architecture. If required, programs for the integrated hardware security module (HSM) can also be developed with the UDE version 3.3. The HSM offers vehicle manufacturers a configurable system integrity protection of their control units and, due to its flexibility, is also equipped to meet future security requirements. In addition, the UDE 3.3 supports programming speed of the enlarged flash memory of 4 MByte by up to 20 times faster than in the previous AUDO family.
The UDE 3.3 also makes debugging of program code on the new high-performance Generic Timer Module (GTM) easier. With the help of its own instruction set, various tasks in the areas of time measurement, collection and comparison of digital input signals as well as complex algorithms such as pulse width modulation (PWM) can be solved. The On-Chip Debug System (OCDS) is well-known from the previous TriCore architecture for the AUDO family but was optimized further for the AURIX family and adapted to the requirements of multicore debugging. The new additional options are fully supported by the UDE 3.3 as well as by PLS’ Universal Access Device 2 (UAD2) family and UAD3+.
Infineon relies on the already proven Emulation Devices (ED) with integrated Multi Core Debug Solution (MCDS) for program trace, data trace and bus trace. The Emulation Devices are pin-compatible with the production chip. However, they contain a sophisticated observation and trigger logic as well as currently up to 2 MByte of emulation memory. Programming of the emulation logic can be comfortably carried out with the further developed Universal Emulation Configurator (UEC), which is integrated in the UDE 3.3. The reason for this is because the UEC offers a graphical configuration of measurement tasks by which signals and actions are linked by a state machine.
For the first time, Infineon has also implemented an Aurora GigaBit Trace (AGBT) interface on the Emulation Device in order to further increase testability of the new AURIX microcontroller with multi-core architecture. As a result, the trace memory can be greatly enlarged by connecting external hardware, which in turn allows the management of high-end trace tasks with large amounts of data, for example code coverage. However, a 2.5 GB/s Aurora interface requires correspondingly high-performance hardware for signal acquisition, signal conditioning and preprocessing on the target. Therefore, not only is a trace pod with AGBT interface available for the UAD3+ from PLS, but it can also be equipped with up to 4 GByte of external trace memory.
www.pls-mc.com