
Flexible, transparent LED displays move closer to reality
While monolayers hold promise in such applications for their low light absorption and their durability under mechanical deformation, monolayer films are often riddled with defects at the nanoscale level that degrade their performance. Now, scientists have found that using an organic super acid chemical treatment results in a 100-fold increase in the material’s photoluminescence quantum yield – a ratio describing the amount of light generated by the material versus the amount of energy put in.
The greater the emission of light, the higher the quantum yield and the better the material quality. The researchers enhanced the quantum yield for molybdenum disulfide, or MoS2, from less than 1% up to 100% by dipping the material into a superacid called bistriflimide, or TFSI.
The findings, which were published in the Nov. 27 issue of Science, opens the door to the practical application of monolayer materials, such as MoS2, in optoelectronic devices and high-performance transistors. MoS2 is seven-tenths of a nanometer thick. For comparison, a strand of human DNA is 2.5 nanometers in diameter.
"Traditionally, the thinner the material, the more sensitive it is to defects," says principal investigator Ali Javey, UC Berkeley professor of electrical engineering and computer sciences and a faculty scientist at Berkeley Lab. "This study presents the first demonstration of an optoelectronically perfect monolayer, which previously had been unheard of in a material this thin."
The researchers looked to superacids because, by definition, they are solutions with a propensity to ‘give’ protons, often in the form of hydrogen atoms, to other substances. The chemical reaction, called protonation, has the effect of filling in for the missing atoms at the site of defects as well as removing unwanted contaminants stuck on the surface, the researchers said.
The authors noted that scientists have been pursuing monolayer semiconductors because of their low absorption of light and their ability to withstand twists, bends and other extreme forms of mechanical deformation, which can enable their use in transparent or flexible devices. MoS2, specifically, is characterized by molecular layers held together by van der Waals forces, a type of atomic bonding between each layer that is atomically sharp.
An added benefit of having a material that is so thin is that it is highly electrically tunable. For applications such as LED displays, the feature may allow devices to be made where a single pixel could emit a wide range of colors rather than just one by varying the amount of voltage applied.
Schematic of a laser beam energizing a monolayer semiconductor made of molybdenum disulfide, or MoS2. The red glowing dots are particles excited by the laser. (Image by Der-Hsien Lien)
The lead authors added that the efficiency of an LED is directly related to the photoluminescence quantum yield so, in principle, one could develop high-performance LED displays that are transparent when powered off and flexible using the ‘perfect’ optoelectronic monolayers produced in this study.
The treatment also has revolutionary potential for transistors. As devices in computer chips get smaller and thinner, defects play a bigger role in limiting their performance.
"The defect-free monolayers developed here could solve this problem in addition to allowing for new types of low-energy switches," says Javey.
For more, see the paper published in Science: Near-unity photoluminescence quantum yield in MoS2.
Related articles:
Imec laminates stretchable LED display onto garments
White LED flexes to suit wearable and curved displays
‘Invisible wires’ improve solar cell efficiency
‘Skin-like’ full-color display can be applied to plastics, fabrics
