MENU

Flying like a beetle

Flying like a beetle

Technology News |
By Wisse Hettinga

Cette publication existe aussi en Français


EPFL scientists found that rhinoceros beetles use passive mechanisms to deploy and retract wings instead of muscles. The findings inspired them to develop a new microrobot

Birds, bats, and bees all use distinct muscles to deploy and retract their wings. Smaller insects, given the less space available, may be different and scientists are still debating if they use indeed muscles to power their wings. Beetles show a complex example of flying mechanism, having a pair of stiff forewings, called elytra, and a pair of foldable, membranous hindwings: At rest, the hindwings are folded under the protective case of the elytra; before take-off, the elytra open fully and release the hindwings that are deployed in an origami-like way.

Despite recent research on the beetles’ hindwings, studies could not elucidate how they are powered. Now, scientists led by Dario Floreano at EPFL have unveiled for the first time that beetles’ hindwings are passively deployed and retracted. Using a combination of high-speed cameras and tests on robotic models, they show that the hindwings leverage the elytra to deploy and retract while the flapping forces the wings to unfold. The findings could be useful to design new microrobots that could fly in confined spaces. EPFL researchers already used the newly acquired knowledge to test a flapping microrobot that exploits a similar passive mechanism to take off, fly, and land. The research has been published in Nature.

Rhinoceros beetle ready for a flight – 2024 EPFL/Hoang-Vu Phan – CC-BY-SA 4.0

“Contrary to the assumption that each motion requires a dedicated mechanism, this study shows that natural evolution leverages control synergies and physical interactions to reduce complexity, save energy, and gain resilience,” says Dario Floreano, director of the Laboratory of Intelligent Systems at EPFL. Previous research has extensively explored the origami-like fold of the beetles’ hindwings, assuming that thoracic muscles propel their deployment and retraction. “The main challenge was to demonstrate that muscles are not involved in the wing deployment process at the beetles’ hindwing bases”, says Hoang-Vu Phan, a postdoc in the group of Floreano and first author of the publication.

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s