MENU

Graphene-based film cools high power LEDs

Graphene-based film cools high power LEDs

Technology News |
By eeNews Europe



A research team led by Johan Liu, professor at Chalmers University of Technology have previously shown that graphene can have a cooling effect on silicon-based electronics which became a starting point for researchers conducting research on the cooling of silicon-based electronics using graphene.

"Increased thermal capacity could lead to several new applications for graphene," said Liu. "One example is the integration of graphene-based films into microelectronic devices and systems, such as highly efficient LEDs, lasers and RF components for cooling purposes. Graphene-based film could also pave the way for faster, smaller, more energy efficient, sustainable high power electronics."

“The methods that have been in place so far have presented the researchers with problems,” admitted Liu. “It has become evident that those methods cannot be used to rid electronic devices off great amounts of heat, because they have consisted only of a few layers of thermal conductive atoms. When you try to add more layers of graphene, another problem arises, a problem with adhesiveness. After having increased the amount of layers, the graphene no longer will adhere to the surface, since the adhesion is held together only by weak van der Waals bonds.”

“We have now solved this problem by managing to create strong covalent bonds between the graphene film and the surface, which is an electronic component made of silicon.”

The addition of a property-altering molecule creates stronger bonds. Having tested several different additives, the Chalmers researchers concluded that adding (3-Aminopropyl) triethoxysilane (APTES) molecules were most effective. When heated and put through hydrolysis, it created silane bonds between the graphene and the electronic component.


Using silane coupling doubles the thermal conductivity of the graphene. The researchers have shown that the in-plane thermal conductivity of a 20 µm thick graphene based film can reach a thermal conductivity value of 1600W/mK – four times that of copper.

Related articles and links:

www.chalmers.se

News articles:

Graphene paves the way for world’s thinnest light bulb

Graphene-based solar cells and LEDs take step closer

Graphene converts light-to-electricity in under 50 femtoseconds

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s