MENU

Graphene oxide’s conductivity fine tuned on demand

Graphene oxide’s conductivity fine tuned on demand

Technology News |
By eeNews Europe



The new method for fine tuning conductivity could lead to control over optical and magnetic properties of components which could have a far-reaching impact  in power management and LED applications.

Super-strong graphene oxide (GO) sheets are useful for ultrathin, flexible nano-electronic devices, and display novel properties including photoluminescence and room temperature ferromagnetism.

The conductivity of GO is lower than graphene because of disruptions within GO’s bonding structure. Carbon atoms in GO exhibit a blurring of energy levels called sp2 or sp3 hybridizations. In ordinary GO, bonding in the sp2 level is disrupted, and under severe disruption the GO becomes an insulator rather than a conductor. Highly-reduced GO (rGO), with lower oxygen levels, has a near-perfect hexagonal lattice structure with strong bonds and high conductivity.

By adjusting the percentages of sp2 and sp3 domains in GO, the WPI-MANA team are able to fine tune band gaps and control conductivity. Current methods of controlling bandgaps in GO are chemically-based, expensive, and cannot be used within electronic components themselves.

The Japanese scientists at WPI-MANA have achieved non-volatile tuning of bandgaps in multi-layered GO within an all-solid-state electric double layer transistor (EDLT). The EDLT comprised GO on a silica glass substrate gated by a zirconia proton conductor. The team triggered a reversible electrochemical reduction and oxidation (redox) reaction at the GO/zirconia interface by applying a dc voltage. This in turn caused proton migration from GO through the zirconia (see image). The redox reaction created rGO, and caused a fivefold increase in current in the transistor.

The rGO retained conductivity for more than one month without further voltage application. Compared with field-effect transistors, the new EDLT uses far less voltage to switch between on and off phases, meaning it is far cheaper to use.

 
The EDLT with graphene oxide (GO) made by WPI-MANA researchers allows fine tuning of bandgaps in the GO, meaning that conductivity, as well as magnetic and optical properties, can be carefully controlled.

Related links and articles:

www.nims.go.jp/eng/index.html

News articles:

3D graphene structures for use in super-capacitors inspired by sugar bubbles

Low cost solar cell based on graphene and perovskite delivers an efficiency of 15.6 percent

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s