Identifying defects in LED materials promises more efficient lighting

Identifying defects in LED materials promises more efficient lighting

Technology News |
By Rich Pell

The characterization of the point defects could result in the fabrication of more efficient, longer lasting LED lighting.

A paper describing the research has been published in the April 4 issue of Applied Physics Letters [APL 108, 141101 (2016)].

“Techniques are available to assess whether such defects are present in the LED materials and they can be used to improve the quality of the material,” said materials professor Chris Van de Walle, whose research group carried out the work.

In the world of high-efficiency solid-state lighting, not all LEDs are alike. As the technology is utilized in a more diverse array of applications – including search and rescue, water purification and safety illumination, in addition to their many residential, industrial and decorative uses – reliability and efficiency are top priorities. Performance, in turn, is heavily reliant on the quality of the semiconductor material at the atomic level.

“In a LED, electrons are injected from one side, holes from the other,” explained professor Van de Walle. As they travel across the crystal lattice of the semiconductor – in this case gallium-nitride-based material – the meeting of electrons and holes (the absence of electrons) is what is responsible for the light that is emitted by the diode: As electron meets hole, it transitions to a lower state of energy, releasing a photon along the way.

Occasionally, however, the charge carriers meet and do not emit light, resulting in the so-called Shockley-Read-Hall (SRH) recombination. According to the researchers, the charge carriers are captured at defects in the lattice where they combine, but without emitting light.

The defects identified involve complexes of gallium vacancies with oxygen and hydrogen. “These defects had been previously observed in nitride semiconductors, but until now, their detrimental effects were not understood,” explained lead author Cyrus Dreyer, who performed many of the calculations on the paper.

“It was the combination of the intuition that we have developed over many years of studying point defects with these new theoretical capabilities that enabled this breakthrough,” said professor Van de Walle, who credits co-author Audrius Alkauskas with the development of a theoretical formalism necessary to calculate the rate at which defects capture electrons and holes.

The method lends itself to future work identifying other defects and mechanisms by which SRH recombination occurs, said Van de Walle.

“These gallium vacancy complexes are surely not the only defects that are detrimental,” said Van de Walle. “Now that we have the methodology in place, we are actively investigating other potential defects to assess their impact on nonradiative recombination.”

Related articles:
How to design better, more efficient lighting systems
Energy saving LED light helps hospital patients sleep
OLED TADF startup attracts $13.5m from global OLED panel makers

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles