Implantable alcohol-monitoring chip communicates through RF backscatter

Implantable alcohol-monitoring chip communicates through RF backscatter

Technology News |
By eeNews Europe

Sporting an array of microelectrode electrochemical sensors designed to measure ethanol levels, combined with a 4-turn on-chip coil for RF energy harvesting and backscatter communication, the 0.85×1.5mm2 chip is small enough to be injected under the skin using a 16-gauge syringe for continuous, long-term alcohol monitoring.

The alcohol monitoring chip alongside a penny and a
16 gauge needle. Photos by David Baillot/
UC San Diego Jacobs School of Engineering.
Close up photograph of the CMOS die.

In order to remove ambient interferences and motion artifacts, the “BioMote” sensor node as the authors describe it consists of three electrochemical sensors: one functionalized with the AOx enzyme to measure ethanol; one unfunctionalized sensor that measures background and non-specific/interfering species; and a third microelectrode functionalized with a hydrogen ion selective membrane (IrOx), to perform pH measurements. This allows for a differential measure of the ethanol content in the subcutaneously interstitial fluid.

The sensing principle is based on the enzymatic reaction that occurs when alcohol oxidase (AOx) interacts with ethanol, producing hydrogen peroxide (H2O2) as a by-product which is then oxidized to generate free electrons to be detected. The researchers also implemented on-chip a low-power multi-technique potentiostat to support both amperometric and potentiometric measurements with 2.5nA sensitivity with 30.1 dB dynamic range and 0.5mV sensitivity with 43 dB dynamic range, respectively.

Architecture and communication principle of the BioMote sensor.

Designed in 65nm CMOS, the whole chip only draws 0.970µW and is powered via the coupling between its on-chip coil and a wearable device at 985MHz. It transmit the ethanol measurement readouts through backscatter using a self-oscillating current-to-frequency (I-to-F) converter, modulating the resonant frequency of the wireless link. The researchers also designed ultra-low power sensor readout circuits for the chip and were able to minimize its measurement time to just three seconds, further reducing power consumption.

“The ultimate goal of this work is to develop a routine, unobtrusive alcohol and drug monitoring device for patients in substance abuse treatment programs,” explained Drew Hall, an electrical engineering professor at the UC San Diego Jacobs School of Engineering who led the project. The idea of such an implantable chip is to remove the need for obtrusive breathalyzers or lengthy and costly blood tests, it could be administered in a clinic without surgery. The chip has been tested in vitro, in mixtures of ethanol in diluted human serum underneath layers of pig skin. Next, the researchers plan to test the chip in live animals.

It is only a proof-of-concept, but the researchers have already filed a provisional patent on this technology. Hall envisions that multiple sensors on a chip could be functionalized to detect different substances, making it possible to offer long-term, personalized medical monitoring.

University of California San Diego –


Related articles:

Interscatter’ tech lets implants talk Wi-Fi

Backscatter radio range reaches 2.8km

Radio on a power budget: let wearables take the smallest share

UHF could usher in ‘super-Wi-Fi’


If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles