
Intel 64-chip neuromorphic system now available for research
Intel launched Loihi in 2017 as a 14nm FinFET chip capable of representing 130,000 neurons and 130 million synapses (see Intel launches self-learning processor). Unlike convolutional neural network (CNN) and other deep learning processors the Loihi test chip uses an asynchronous spiking model to mimic neuron and synapse behavior in a much closer analog to animal brain behaviour.
The Pohoiki Beach system comprises one or more Nahuku boards, each of which contains 8 to 32 Loihi neuromorphic chips.
The Pohoiki Beach is capable of representing 8 million neurons and is suitable for research project on such things as sparse coding, graph search and constraint-satisfaction problems. “Pohoiki Beach will now be available to more than 60 ecosystem partners, who will use this specialized system to solve complex, compute-intensive problems,” said Rich Uhlig, managing director of Intel Labs.
Chris Eliasmith, co-CEO of Applied Brain Research and professor at University of Waterloo, said that Loihi had been able to demonstrate a 100 times lower power consumption running a real-time deep-learning benchmark, compared to a GPU and 5 times lower power than specialized IoT hardware.
Later this year Intel plans to introduce a larger Loihi-based system called Pohoiki Springs capable of representing 100 million neurons.
News articles:
Intel launches self-learning processor
French startup develops self-learning AI chipset
Consortium seeks to scale artificial intelligence
BrainChip launches neuromorphic hardware accelerator
