LED applications will be key drivers for bulk GaN market, predicts Yole

Market news |
By eeNews Europe

The report entilted ‘Free-Standing & Bulk GaN Substrates for Laser Diode, LED and Power Electronics’ provides an overview of GaN industry as well as a detailed analysis of the GaN use for Laser diode, LED and power electronic applications.

Yole says that there is no doubt that LED technology will take market share over the traditional lamp and tube business. The recent announcements from LED makers (> 150 lm/W now in production) are proving that the performance roadmap is in line with expectations i.e. LED does as well and even better than traditional bulbs and tubes.

Native bulk GaN emerges as an alternative to sapphire or silicon, allowing further improvement of LED performance. Despite potential performance benefits for UHB- LEDs, massive adoption of GaN wafers remains hypothetical. Taking into account the historical price reductions of bulk GaN substrates, a base scenario outlines where the GaN on GaN LEDs will be limited only to niche markets.

“If the GaN industry succeeds in replying to the cost pressure from LED makers and the price of 4 inch GaN wafers falls below the breakeven price, a more significant adoption could be forecast. We see an about three times the difference in terms of market volume for LED manufacturing between the two scenarios,” explained Dr Hong Lin, Market & Technology Analyst, Compound Semiconductors, at Yole Développement.

Yole predicts that the demand of GaN substrates for laser diode applications will probably decrease below the 20k TIE/yr threshold in the coming years.

Blu-ray applications now represent the largest market for blue laser diode applications. The market will increase in the short term with the arrival of the new generation game stations. Yole Développement believes that this growth will not persist, as more and more people will play games and watch movies online instead. Despite the recent rapid development of blue and green laser diodes, Yole Développement sees two scenarios for the adoption of GaN based laser diodes for the emerging projector market. The price of laser diodes is the essential factor to consider.

Combining all applications, the demand for 2 inch GaN substrates will be more than two times higher in the aggressive scenario than in the base scenario. In the best case, the demand would keep relatively stable until 2020.

In R&D, non polar and semi polar substrates have been proposed for laser diode manufacturing. In principle, the semi polar approach seems to be the most promising in terms of device performance. In practice, c-plane based devices still have better performance. More than 85% commercial GaN wafers are produced by HVPE, dominated by Japanese companies

Almost all commercial GaN wafers are produced by HVPE, but the details of the growth process and separation techniques vary from company to company – for example, ammonothermal growth at Mitsubishi Chemical, and the new acidic ammonothermeral method at Soraa. Na-flux LPE growth seems promising, but Yole Développement’s analysts have not yet seen many GaN devices based on those substrates. It will take some time to convince the device producers.Non polar and semi polar substrates have attracted significant attention. However, the substrate size is still small and unsuitable for mass production.

As of today, the GaN substrates market is currently heavily concentrated with 87% held by Japanese companies. Non-Japanese players are currently in small volume production or in R&D stage, too early to challenge the market leaders. Without exception, Japan will continue to dominate the Bulk/FS GaN market for the coming years.

The GaN power device industry probably generated less than $2.5 million in revenues in 2012. However, overall GaN activity has generated extra revenues as R&D contracts, qualification tests, and sampling for qualified customers was extremely buoyant. Sixteen out of 20 established power electronics companies are involved or will be involved in the GaN power industry.

Among the numerous substrates proposed for GaN power devices, bulk GaN solution is definitely beneficial to the device performance. However, Yole Développement remains quite pessimistic that bulk GaN could widely penetrate the power electronics segment unless 4 inch bulk GaN wafers can be in the $1,500 range by 2020. The main reason is that, GaN power devices are positioned as a cost-effective solution, between incumbent Silicon and the ramping-up SiC technologies. If the $1,500 cost cannot be reached, then Yole Développement assumes no bulk GaN substrate will penetrate this market.

Visit Yole Développement at


Linked Articles
eeNews Europe