MENU

Mechanochemical advance reduces perovskite manufacturing costs

Mechanochemical advance reduces perovskite manufacturing costs

Technology News |
By eeNews Europe



The lower cost production method which will help the uptake of the material in future solar cells.

The Polish resarchers can now create perovskites by synthesis using solid-state mechanochemical processes which involves grinding powders.

Recent research findings show that by the use of mechanical force, effective chemical transformations take place in solid state.

Mechanochemical reactions have been under investigation for many years by the teams of Prof. Janusz Lewinski from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and the Faculty of Chemistry of Warsaw University of Technology. In their latest publication, the Warsaw researchers describe a simple and effective method of obtaining perovskites – photovoltaic materials with a spatially complex crystal structure.

"With the aid of mechanochemistry we are able to synthesize a variety of hybrid inorganic-organic functional materials with a potentially great significance for the
energy sector. Our youngest ‘offspring’ are high quality perovskites. These compounds can be used to produce thin light-sensitive layers for high efficiency solar cells," said Prof. Lewinski.

Perovskites are a large group of materials, characterized by a defined spatial crystalline structure. In nature, the perovskite naturally occurring as a mineral is
calcium titanium(IV) oxide CaTiO3. Here the calcium atoms are arranged in the corners of the cube, in the middle of each wall there is an oxygen atom and at the centre of the cube lies a titanium atom. In other types of perovskite the same crystalline structure can be constructed of various organic and inorganic compounds, which means titanium can be replaced by, for example, lead, tin or germanium. As a result, the properties of the perovskite can be adjusted so as to best fit the specific application, for example, in photovoltaics or catalysis, but also in the construction of superconducting electromagnets, high voltage transformers, magnetic refrigerators, magnetic field sensors, or RAM memories.


"Two powders are poured into the ball mill: a white one, methylammonium iodide CH3NH3I, and a yellow one, lead iodide PbI2. After several minutes of milling no trace is left of the substrates. Inside the mill there is only a homogeneous black powder: the perovskite CH3NH3PbI3," explained doctoral student Anna Maria Cieslak (IPC PAS).

"Hour after hour of waiting for the reaction product? Solvents? High temperatures? In our method, all this turns out to be unnecessary. We produce chemical compounds
by reactions occurring only in solids at room temperature," said Dr. Daniel Prochowicz (IPC PAS).

The mechanochemically manufactured perovskites were sent to the team of Prof. Michael Graetzel from the Ecole Polytechnique de Lausanne in Switzerland, where they were used to build a new laboratory solar cell. The performance of the cell containing the perovskite with a mechanochemical pedigree proved to be more than 10% greater than a cell’s performance with the same construction, but containing an analogous perovskite obtained by the traditional method, involving solvents.

"The mechanochemical method of synthesis of perovskites is the most environmentally friendly method of producing this class of materials. Simple, efficient and fast, it is ideal for industrial applications. With full responsibility we can state: perovskites are the materials of the future, and mechanochemistry is the future of perovskites," explained Prof. Lewinski.


The described research will be developed within GOTSolar collaborative project funded by the European Commission under the Horizon 2020 Future and Emerging
Technologies action.

Related articles and links:

www.ichf.edu.pl

News articles:

Solar cells: Charge carrier formation impacts energy effificency

Tandem thin film solar cells add perovskite to boost efficiency

Light trapping technique boosts solar cell power by 30 percent

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s