MENU

New class of magnets attract energy harvesting attention

New class of magnets attract energy harvesting attention

Technology News |
By eeNews Europe



The researchers, Harsh Deep Chopra, professor and chair of mechanical engineering at Temple, and Manfred Wuttig, professor of materials science and engineering at Maryland, published their findings in an article entitled ‘Non-Joulian Magnetostriction’ in the May 21 issue of the journal Nature.

The discovery has the potential to not only displace existing technologies but create new applications due to the unusual combination of magnetic properties.

“Our findings fundamentally change the way we think about a certain type of magnetism that has been in place since 1841,” said Chopra, who also runs the Materials Genomics and Quantum Devices Laboratories at Temple’s College of Engineering.

In the 1840s, physicist James Prescott Joule discovered that iron-based magnetic materials changed their shape but not their volume when placed in a magnetic field. The phenomenon is referred to as ‘Joule Magnetostriction’, and since its discovery 175 years ago, all magnets have been characterized on this basis.

“We have discovered a new class of magnets, which we call ‘Non-Joulian Magnets,’ that show a large volume change in magnetic fields,” said Chopra. “Moreover, these non-Joulian magnets also possess the remarkable ability to harvest or convert energy with minimal heat loss.”

Never-before-seen highly periodic magnetic ‘cells’ or ‘domains’ in iron-gallium alloys responsible for non-Joulian magnetism.  Image courtesy of Harsh Chopra, Temple University


Chopra and Wuttig discovered that when they thermally treated certain iron-based alloys by heating them in a furnace at approximately 760 degrees Celsius for 30 minutes, then rapidly cooled them to room temperature, the materials exhibited the non-Joulian behavior.

The researchers found the thermally treated materials contained never-before-seen microscopic cellular-like structures whose response to a magnetic field is at the heart of non-Joulian magnetostriction. “Knowing about this unique structure will enable researchers to develop new materials with similarly attractive properties,” explained Wuttig.

The researchers noted that conventional magnets can only be used as actuators for exerting forces in one direction since they are limited by Joule magnetostriction. Actuation, even in two directions, requires bulky stacks of magnets, which increase size and reduce efficiency. Since non-Joulian magnets spontaneously expand in all directions, compact omnidirectional actuators can now be easily realized, they said.

Because these new magnets also have energy efficient characteristics, they can be used to create a new generation of sensors and actuators with vanishingly small heat signatures, said the researchers. These magnets could also find applications in efficient energy harvesting devices; compact micro-actuators for aerospace, automobile, biomedical, space and robotics applications; and ultra-low thermal signature actuators for sonars and defense applications.

Since the new magnets are composed of alloys that are free of rare-earth elements, they could replace existing rare-earth based magnetostriction alloys, which are expensive and feature inferior mechanical properties claim the researchers.

Related articles and links:

temple.edu

News articles:

Harvesting energy from electromagnetic waves

3D-printed aerogels promise energy storage benefits

Energy harvesters power wearables

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s