Next-gen inertial sensors aim to replace GPS

Next-gen inertial sensors aim to replace GPS

Business news |
By Rich Pell

HRL’s research will explore a novel approach to addressing long-standing precision navigation rquirements faced by military personnel.

Positioning, navigation, and timing are key to ensuring the location accuracy critical to the success of modern military missions. Today’s military systems typically rely on the GPS to ensure their position accuracy. While GPS provides sub-meter accuracy in optimal conditions, the signal is often lost or degraded due to natural interference or malicious jamming.

“The ATLAS project will deliver a comprehensive approach to breaking performance and cost, size, weight, and power barriers in inertial sensor technology that prevent robust, GPS-independent, military positioning, navigation, and guidance,” said Dr. Logan Sorenson, Principal Investigator and Research Staff Member in HRL’s Sensors and Materials Laboratory.

ATLAS will combine intimate locking of a Micro-Electro-Mechanical Systems (MEMS) Coriolis Vibratory Gyroscope (CVG) sensor with an atomically-stable frequency reference in order to exploit the intrinsic accuracy of the atomic hyperfine transition frequency.

“The engineering challenge lies in developing a system architecture to transfer the stability from the atomic reference to the CVG sensor without introducing unintended noise,” explained Dr. Sorenson.

Related articles:
Pinpoint accuracy: Squeezing GPS measurements down to centimeters
Signal generator facilitates head unit tests

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles