
Pinpointing perovskite’s ability to produce cheaper solar energy
Widely-used commercial methods employed to generate PV energy, such as using silicon or thin film based technologies, are still expensive as they are
processed through vacuum-based techniques. The development of technologies and the invention of new materials could lead to the reduction of PV energy generation costs.
The Exeter scientists have found that perovskite could hold the key to cheaper PV energy generation.
Crucially, the team conducted studies with perovskite in Alta Floresta (Brazil), Frenchman Flat, (USA) , Granada (Spain), Beijing (China), Edinburgh (UK) and Solar Village (Saudi Arabia), and confirmed its efficiency in converting light to power in a range of atmospheric conditions, rather than just under direct sunlight.
The research by the team from the Environment and Sustainability Institute (ESI), based at the University of Exeter’s Penryn Campus in Cornwall, is published in the
journal Solar Energy Materials & Solar Cells.
Professor Tapas Mallick, who was involved in the research said: “This research offers the potential for significant progress to be made in finding cheaper ways to
generate PV energy. The results, which show how perovskite devices work under real operating conditions, will lead to our understanding them better, which will benefit industrial-scale production processes".
“Given concern on large-scale solar farms across the country, such techniques will be key to understand how the perovskite technology integrates within our building envelope”.
Dr Senthilarasu Sundaram, also from the ESI, added: “The research is questioning the perovskite material’s ability to produce stable solar cells under versatile climatic conditions. The obtained results are crucial in terms of perovskite solar cell growth and understanding how to make better devices.”
The paper entitled ‘Effects of spectral coupling on perovskite solar cells under diverse climatic conditions’ by S. Dr Senthilarasu Sundaram, Dr. Eduardo Fernández and Professor Tapas Mallick from the University of Exeter, and Dr F Almonacid from the University of Jaen, Spain, is available online.
Related articles and links:
News articles:
Charge transport jamming optimizes perovskite solar cell efficiences
Spray-on solar cells reduce solar power costs
From 20x faster batteries to spray-on solar cells
