MENU

Process technology enables ultra-low-loss integrated photonic circuits

Process technology enables ultra-low-loss integrated photonic circuits

Technology News |
By Jean-Pierre Joosting



A group of scientists led by Professor Tobias J. Kippenberg at the EPFL School of Basic Sciences has developed a new technology for building silicon nitride integrated photonic circuits with record low optical losses and small footprints.

Integrated photonic chips are usually made from silicon that is abundant and has good optical properties. But silicon can’t do everything we need in integrated photonics, so new material platforms have emerged. One of these is silicon nitride (Si3N4), whose exceptionally low optical loss (orders of magnitude lower than that of silicon), has made it the material of choice for applications for which low loss is critical, such as narrow-linewidth lasers, photonic delay lines, and nonlinear photonics.

Combining nanofabrication and material science, the technology is based on the photonic Damascene process developed at Ecole Polytechnique Fédérale de Lausanne (EPFL). Using this process, the team made integrated circuits of optical losses of only 1 dB/m, a record value for any nonlinear integrated photonic material. Such low loss significantly reduces the power budget for building chip-scale optical frequency combs (“microcombs”), used in applications like coherent optical transceivers, low-noise microwave synthesizers, LiDAR, neuromorphic computing, and even optical atomic clocks. The team used the new technology to develop meter-long waveguides on 5×5 mm2 chips and high-quality-factor microresonators. They also report high fabrication yield, which is essential for scaling up to industrial production.


“These chip devices have already been used for parametric optical amplifiers, narrow-linewidth lasers and chip-scale frequency combs”, says Dr. Junqiu Liu who led the fabrication at EPFL’s Center of MicroNanoTechnology (CMi). “We are also looking forward to seeing our technology being used for emerging applications such as coherent LiDAR, photonic neural networks, and quantum computing.”

 

Reference
J. Liu, G. Huang, R. N. Wang, J. He, A. S. Raja, T. Liu, N. J. Engelsen, and T. J. Kippenberg, “High-yield, wafer-scale fabrication of ultralow-loss, dispersion-engineered silicon nitride photonic circuits”, Nature Communications 16 April 2021. DOI: 10.1038/s41467-021-21973-z.

www.epfl.ch/index.en.html

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s