Pure-organic TADF emitters cut cost of fluorescence OLEDs

Pure-organic TADF emitters cut cost of fluorescence OLEDs

Technology News |
By Graham Prophet

Conventional OLEDs use the phosphorescent emitters which have shown high internal quantum efficiency (IQE) of nearly 100%. However, they depend on precious heavy metals such as iridium and platinum incorporated in phosphorescent metal-complexes; these limit their commercialization.

In order to overcome the drawbacks, the research team, which was led by Prof. Tae-Woo Lee (Dept. of Materials Science and Engineering) at POSTECH, employed pure-organic TADF emitters which can show a high IQE approaching 100%, without precious metals. TADF emitters benefit from easy synthesis using pure-organic molecules and versatile molecular design which helps reduce synthesis costs.

TADF emitters have also introduced an inexpensive, simple solution-process to fabricate the TADF-OLEDs by solving fundamental problems which limit efficiency in solution-processed TADF-OLEDs. A multi-functional buffer hole injection layer (Buf-HIL) that can increase the hole injection capability to the emitting layer (EML) due to its high work function, and also improve the luminescence efficiency of TADF-OLEDs by preventing exciton quenching at the HIL/EML interface, was employed. New polar aprotic solvent improved the device efficiency by improving the solubility of pure-organic TADF emitters, reducing the surface roughness and the aggregation of dopants, and managing the exciton quenching in the emitting layer.

The improvement in solution processed TADF-OLEDs helps to counter the disadvantages of a complex and expensive vacuum-deposition process which leads to lower the production cost of the devices.

“This technology is a big leap toward the development of inexpensive and solution-processed OLED displays and solid-state lighting because this method uses only low-cost pure-organic molecules and simple solution process to realise the extremely high efficiency solution-processed OLEDs,” said Prof. Tae-Woo Lee.
The research has been published in Advanced Materials journal.

The research insitution is at;

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles