MENU

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

News |
By Wisse Hettinga



Rice engineers take unconventional route to improving thermophotovoltaic systems

Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat into electricity via light. Using an unconventional approach inspired by quantum physics, Rice engineer Gururaj Naik and his team designed a thermal emitter that can deliver high efficiencies within practical design parameters.

The research could inform the development of thermal-energy electrical storage, which holds promise as an affordable, grid-scale alternative to batteries. More broadly, efficient TPV technologies could facilitate renewable energy growth ⎯ an essential component of the transition to a net-zero world. Another major benefit of better TPV systems is recouping waste heat from industrial processes, making them more sustainable. To put this in context, up to 20-50% of the heat used to transform raw materials into consumer goods ends up being wasted, costing the United States economy over $200 billion annually.

TPV systems involve two main components ⎯ photovoltaic (PV) cells that convert light into electricity and thermal emitters that turn heat into light. Both of these components have to work well in order for the system to be efficient, but efforts to optimize them have focused more on the PV cell.

“Using conventional design approaches limits thermal emitters’ design space, and what you end up with is one of two scenarios: practical, low-performance devices or high-performance emitters that are hard to integrate in real-world applications,” said Naik, associate professor of electrical and computer engineering.

In a new study published in npj Nanophotonics, Naik and his former Ph.D. student Ciril Samuel Prasad ⎯ who has since earned a doctorate in electrical and computer engineering from Rice and has taken on a role as a postdoctoral research associate at Oak Ridge National Laboratory ⎯ demonstrated a new thermal emitter that promises efficiencies of over 60% despite being application-ready.

“We essentially showed how to achieve the best possible performance for the emitter given realistic, practical design constraints,” said Prasad, who is the first author on the study.

A new thermal emitter developed by Rice University engineers composed of a tungsten metal sheet, a thin layer of a spacer material and a network of silicon nanocylinders promises efficiencies of over 60%. (Photos by Gustavo Raskosky/Rice University)

Read further here

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s