
Quantum radar project promises to expose stealth aircraft
The new radar is based on the quantum principle of entanglement – what Einstein once referred to as “spooky action at a distance.” According to the researchers working on the project, the new technology promises to help radar operators cut through heavy background noise and isolate objects with “unparalleled accuracy.”
“In the Arctic, space weather such as geomagnetic storms and solar flares interfere with radar operation and make the effective identification of objects more challenging,” says Jonathan Baugh, a faculty member at the Institute for Quantum Computing (IQC) and a professor in the Department of Chemistry who is leading the project with other researchers at IQC and the Waterloo Institute for Nanotechnology. “By moving from traditional radar to quantum radar, we hope to not only cut through this noise, but also to identify objects that have been specifically designed to avoid detection.”
Such objects, like stealth aircraft, use special paint and body design that absorb and deflect radio waves – making them invisible to traditional radar detection. They also use electronic jamming to swamp detectors with artificial noise. With quantum radar, say the researchers, in theory these planes will not only be exposed, but also be unaware that they have been detected.
The technology uses a sensing technique called “quantum illumination” to detect and receive information about an object. The technique leverages the quantum principle of entanglement, where two particles – in this case photons – form a connected, or entangled, pair even if separated by a large distance.
The method works by sending one of the photons to a distant object while retaining the other member of the pair. Photons in the return signal are checked for telltale signatures of entanglement – allowing photons from the noisy environmental background to be discarded. This, say the researchers, can greatly improve the radar signal-to-noise in certain situations.
To date, quantum illumination has only been tested in the laboratory. In order for quantum radar to work in the field, researchers say they first need to realize a fast, on-demand source of entangled photons.
“The goal for our project is to create a robust source of entangled photons that can be generated at the press of a button,” says Baugh.
The Government of Canada – under its Department of National Defence’s All Domain Situational Awareness (ADSA) Science & Technology program – is investing $2.7 million to expedite the technology’s use in the field. The country’s 54 North Warning System radar stations, based in the Arctic and operated by the North American Aerospace Defense Command (NORAD), are nearing the end of their life spans and could need to be replaced as early as 2025.
“This project,” says Baugh, “will allow us to develop the technology to help move quantum radar from the lab to the field. It could change the way we think about national security.”
Related articles:
Next-gen missile defense sensor technology unveiled
Radar security market to exceed $25B by 2022, says report
Radar evolution from solid-state to automotive
Hyper-entagled quantum communication tested in the open air
