MENU

Reflectors in space can boost solar farms

Reflectors in space can boost solar farms

Technology News |
By Nick Flaherty



Space engineers from the University of Glasgow have shown how kilometre-wide orbiting reflectors could boost the output of future large-scale solar farms on the surface.

The space researchers at Glasgow modelled the most effective method of using a constellation of orbiting solar reflectors to generate additional power even after the sun appears to have set.

The simulation models showed that putting 20 gossamer-thin reflectors into orbit 1000 kilometres from the surface of the Earth could reflect sunlight to solar farms for an extra two hours each day on average. The additional sunlight could boost the output of the world’s future solar farms, particularly after sunset when electricity demand is high. The output could be scaled up further by adding more reflectors or increasing their size.

The reflectors would maintain an orbit close to the Earth’s terminator line – the boundary where daylight on one side of the planet transitions into night on the other – in an arrangement known as a Walker constellation. These are widely used in technologies like satellite communication systems, where groups of equally-spaced satellites form rings around the planet to ensure consistent communication with the Earth’s surface.

The team developed an algorithm to determine how the reflectors could be arranged in the constellation and angled to catch the sun’s rays most effectively, maximising the additional sunlight reflected to solar power farms around the Earth in the early morning and late evening. 

The researchers suggest that the 20 reflectors could generate an extra 728 megawatt-hours (MWh) of electricity per day – the equivalent of adding an additional large-scale solar power farm to Earth without the associated cost of construction. 

“The price of solar panels has dropped quickly in recent years, increasing the pace of their adoption and paving the way for the creation of large-scale solar power farms around the world,” said Dr Onur Çelik, from the University of Glasgow’s James Watt School of Engineering.

“One of the major limitations of solar power, of course, is that it can only be generated during daylight hours. Putting orbiting solar reflectors in place around the Earth would help to maximise the effectiveness of solar farms in the years to come. Strategically placing new solar farms in locations which receive the most additional sunlight from the reflectors could make them even more effective.” 

The paper is one of the outputs from SOLSPACE, a University of Glasgow-led research project supported by €2.5m (£2.1m) in funding from the European Research Council. 

 “The idea of orbiting solar reflectors isn’t new – in fact, it predates even the space age, as the idea of illuminating cities with light from space was first discussed in the late 1920s,” said Professor Colin McInnes is SOLSPACE’s principal investigator.

“However, space reflectors have only been demonstrated once back in the early 90s, when a 20-metre aluminium-foil reflector was released from the Russian Mir space station to reflect sunlight back to Earth. Tackling the challenges of climate change requires big ideas. While this is undoubtedly a big idea, it builds on technologies that are already well-understood and computer models like ours show how they could be scaled up. In addition, the falling cost of launching payloads to space opens up entirely new possibilities for the future.” 

The paper, ‘A constellation design for orbiting space reflectors to enhance terrestrial solar energy’, is published in Acta Astronautica. 

www.glasgow.ac.uk

 

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s