MENU

Researchers combined two nanosized structures, the light came across!

Researchers combined two nanosized structures, the light came across!

Technology News |
By Wisse Hettinga



In a study reported in ACS Photonics, researchers combined two nanosized structures—one made of diamond and one of lithium niobate—onto a single chip // Phys.org report

Quantum information scientists are always on the hunt for winning combinations of materials, materials that can be manipulated at the molecular level to reliably store and transmit information. Following a recent proof-of-principle demonstration, researchers are adding a new combination of compounds to the quantum materials roster.

In a study reported in ACS Photonics, researchers combined two nanosized structures—one made of diamond and one of lithium niobate—onto a single chip. They then sent light from the diamond to the lithium niobate and measured the fraction of light that successfully made it across.

The greater that fraction, the more efficient the coupling of the materials, and the more promising the pairing as a component in quantum devices.

The result: An extraordinary 92% of the light made the jump from diamond to lithium niobate.

The research was supported in part by Q-NEXT, a U.S. Department of Energy (DOE) National Quantum Information Science Research Center led by DOE’s Argonne National Laboratory. Stanford University’s Amir Safavi-Naeini and Jelena Vuckovic led the study.

“It was an exciting result to get 92% efficiency from this device,” said Hope Lee, paper co-author and a Ph.D. student at Stanford University and researcher who worked with Q-NEXT Director David Awschalom while an undergraduate at the University of Chicago. “It showed the advantages of the platform.”

Learn more

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s