MENU

Researchers create first nanoscale optical parametric amplifier

Researchers create first nanoscale optical parametric amplifier

Technology News |
By Jean-Pierre Joosting



The device functions much like a laser, but while lasers have a fixed output frequency, the output from Rice’s nanoscale “optical parametric amplifier” (OPA) can be tuned over a range of frequencies that includes a portion of the infrared spectrum.

“Tunable infrared OPA light sources today cost around a $100,000 and take up a good bit of space on a tabletop or lab bench,” said study lead author Yu Zhang, a former Rice graduate student at LANP. “What we’ve demonstrated, in principle, is a single nanoparticle that serves the same function and is about 400 nanometers in diameter.”

Zhang, who earned his Ph.D. from Rice in 2014 and today works at Lam Research in Fremont, Calif., said parametric amplification has been used for decades in microelectronics. It involves two input signals, one weak and one strong, and two corresponding outputs. The outputs are also strong and weak, but the energy from the more powerful input — known as the “pump” — is used to amplify the weak incoming “signal” and make it the more powerful output. The low-power output — known as the “idler” — contains a residual fraction of the pump energy.

Rice University’s new light-amplifying nanoparticle consists of a 190-nanometer diameter sphere of barium tin oxide surrounded by a 30-nanometer-thick shell of gold. Image courtesy of Alejandro Manjavacas, Rice University

“Optical parametric amplifiers operate with light rather than electricity,” said LANP Director Naomi Halas, the lead scientist on the new study and the director of Rice’s Smalley-Curl Institute. “In OPAs, a strong pump light dramatically amplifies a weak ‘seed’ signal and generates an idler light at the same time. In our case, the pump and signal frequencies are visible, and the idler is infrared.”

While the pump laser in Rice’s device has a fixed wavelength, both the signal and idler frequencies are tunable.

“People have previously demonstrated nanoscale infrared lasers, but we believe this is the first tunable nanoscale infrared light source,” Halas said.

A copy of the paper is available at: https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.6b01095

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s