MENU

Researchers unlock spintronics in graphene

Researchers unlock spintronics in graphene

Technology News |
By eeNews Europe



The research team is led by Professor Andre Geim, who shared the 2010 Nobel Prize for Physics for work on graphene, a form of carbon with high electron mobility.

Spintronics exploits the intrinsic spin of the electron in addition to its electrical charge to develop microelectronic devices

The researchers have found a new way to interconnect spin and charge by applying a relatively weak magnetic field to graphene and they found that this causes a flow of spins in the direction perpendicular to electric current, magnetizing the graphene sheet. The results are reported in Science.

The Manchester researchers have also shown that graphene placed on boron nitride is a suitable material for spintronics because the induced magnetism extends over macroscopic distances from the current path without decay.

The group claims that the discovery offers opportunities for redesigning current spintronics devices and creating new ones such as spin-based transistors.

Professor Geim said: "We offer a new mechanism, thanks to the unique properties of graphene. I imagine that many venues of spintronics can benefit from this finding."

Antonio Castro Neto, a physics professor from Boston, writing in a commentary article that accompanied the Science learned paper, wrote: "Apparently not satisfied with what they have accomplished so far, Geim and his collaborators have now demonstrated another completely unexpected effect that involves quantum mechanics at ambient conditions. This discovery opens a new chapter to the short but rich history of graphene."

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s