Robotic interface masters a soft touch

Robotic interface masters a soft touch

Technology News |
By Wisse Hettinga

EPFL researchers have developed a haptic device capable of reproducing the softness of various materials

The perception of softness can be taken for granted, but it plays a crucial role in many actions and interactions – from judging the ripeness of an avocado to conducting a medical exam, or holding the hand of a loved one. But understanding and reproducing softness perception is challenging, because it involves so many sensory and cognitive processes.

Robotics researchers have tried to address this challenge with haptic devices, but previous attempts have not distinguished between two primary elements of softness perception: cutaneous cues (sensory feedback from the skin of the fingertip), and kinesthetic cues (feedback about the amount of force on the finger joint).

“If you press on a marshmallow with your fingertip, it’s easy to tell that it’s soft. But if you place a hard biscuit on top of that marshmallow and press again, you can still tell that the soft marshmallow is underneath, even though your fingertip is touching a hard surface,” explains Mustafa Mete, a PhD student in the Reconfigurable Robotics Lab in EPFL’s School of Engineering. “We wanted to see if we could create a robotic platform that can do the same.”

With SORI (Softness Rendering Interface), the RRL, led by Jamie Paik, has achieved just that. By decoupling cutaneous and kinesthetic cues, SORI faithfully recreate the softness of a range of real materials, filling a gap in the robotics field and enabling many applications where softness sensation is critical – from deep-sea exploration to robot-assisted surgery.

The research appears in the Proceedings of the National Academy of Science (PNAS).

Learn more at EPFL

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News


Linked Articles