Simulation software boosts lithium-ion battery performance for EVs

Technology News |
By eeNews Europe

The modeling tool, known as the Virtual Integrated Battery Environment, or VIBE, enables researchers to test lithium-ion batteries under different simulated scenarios before the batteries are built and used in electric vehicles.

VIBE was developed by researchers in ORNL’s Computational Engineering & Energy Sciences group, led by Dr. John Turner, as part of DOE’s Computer-Aided Engineering for Batteries (CAEBAT) partnership.

“Our role in CAEBAT was to develop and deploy an open-source environment that would help to integrate both research and commercial battery modeling efforts. Other CAEBAT partners have developed commercial tools that are compatible with the software infrastructure we’ve developed, and we’re deploying a non-commercial platform for researchers at universities and national labs,” Dr. Turner.

The VIBE simulation tool provides flexibility in designing batteries all the way from cell components to full battery pack.

Sreekanth Pannala, technical lead for the CAEBAT team, explained: “We want to be able to have an idea implemented in a model, see the efficacy of it and then help guide how companies design battery cells using that concept.”

The US’s DOE started the CAEBAT program in 2010, and ORNL had a limited release of the software in 2012. The 2014 release includes many enhancements in both physics capabilities and usability.

“We learned a lot from the first release, got some feedback, built on it and added a lot of new capability in this release,” said Pannala.

The latest software package includes an easy-to-use configuration, setup, launch and post-processing feature, standardized input and information exchange between physics components, and a unique tool for performing coupled electrochemical-electrical-thermal simulations known as Advanced MultiPhysics for Electrochemical and Renewable Energy Storage (AMPERES).

“No previous tool has provided this level of integration between the various physics components,” Pannala said. “This program is bridging the gap between theory and experiment, so that you can now design a battery cell and integrate all the associated processes in order to more accurately predict performance.”

“It can be run on a desktop if you’re doing a small problem,” Pannala said. “Once you’re comfortable with that, you can scale it to a small cluster or supercomputer.”

Additionally, the software is designed so the user can submit a large parametric sweep or optimization case to run overnight, eliminating the need to wrestle for primetime computer hours and allowing users to concentrate on data analysis and problem set-up during the day.

“The ability to scavenge computer resources that are idle at night is attractive for some organizations and companies, and VIBE provides that,” Pannala said.

Together, these features help users analyze the effects of their specific lithium-ion battery design requirements and develop increasingly affordable, safer batteries with longer life and higher performance.
Related articles and links:

News articles:

Nanoscale lithium dendrite formation captured in real-time

Can garnet ceramics unleash high-energy lithium batteries?

Dual function electrolyte promises longer life batteries


Linked Articles