Smart fabric stores data without electronics
The researchers at the University of Washington have created fabrics and fashion accessories that can store data — from security codes to identification tags — without needing any on-board electronics, sensors, power supply or battery.
“This is a completely electronic-free design, which means you can iron the smart fabric or put it in the washer and dryer,” said Shyam Gollakota, associate professor in the Paul G. Allen School of Computer Science & Engineering. “You can think of the fabric as a hard disk — you’re actually doing this data storage on the clothes you’re wearing.”
The researchers in the Google-backed project use the magnetic properties of conductive thread that can be manipulated to store either digital data or visual information such as letters or numbers. This data can be read by a magnetometer that measures the direction and strength of magnetic fields and is embedded in most smartphones.
“We are using something that already exists on a smartphone and uses almost no power, so the cost of reading this type of data is negligible,” said Gollakota. In one example, they stored the passcode to an electronic door lock on a patch of conductive fabric sewn to a shirt cuff. They unlocked the door by waving the cuff in front of an array of magnetometers.
The UW researchers also created a tie, belt, necklace and wristband and decoded the data by swiping a smartphone across them.
They used conventional sewing machines to embroider fabric with off-the-shelf conductive thread, whose magnetic poles start out in a random order. By rubbing a magnet against the fabric, the researchers were able to physically align the poles in either a positive or negative direction, which can correspond to the 1s and 0s in digital data.
The strength of the magnetic signal weakens by about 30 percent over the course of a week, though the fabric can be re-magnetized and re-programmed multiple times. In other stress tests, the fabric patch retained its data even after machine washing, drying and ironing at temperatures of up to 320degF.
The team also demonstrated that the magnetized fabric could be used to interact with a smartphone in a pocket. They developed a glove with conductive fabric sewn into its fingertips, which was used to gesture at the smartphone. Each gesture yields a different magnetic signal that can invoke specific actions like pausing or playing music.
“With this system, we can easily interact with smart devices without having to constantly take it out of our pockets,” said Justin Chan, an Allen School doctoral student.
In the team’s tests, the phone was able to recognize six gestures — left flick, right flick, upward swipe, downward swipe, click and back click — with 90 percent accuracy. Future work is focused on developing custom textiles that generate stronger magnetic fields and are capable of storing a higher density of data.