
Snail-inspired robot can climb walls
A robot, designed to mimic the motion of a snail, has been developed by researchers at the University of Bristol
Adding to the increasing innovative new ways robots can navigate, the team, based at the Bristol Robotics Laboratory, fitted the robot with a sliding suction mechanism enabling the device to slide on water, a substitute of a snail’s mucus which also acts as an adhesive.
The study, which was published today in the journal of Nature Communications, shows a novel way for robots to scale walls easily, potentially changing how difficult-to-access surfaces such as blades of wind turbines, hulls of ships, aircrafts and glass windows of skyscrapers are autonomously inspected. These features also endow sliding suction with great potential for future applications in robotic fields, including industrial gripping, climbing, outdoor and transportation.
Snails can stably slide across a surface with only a single high-payload sucker, offering an efficient adhesive locomotion mechanism for next-generation climbing robots. The critical factor for snails’ sliding suction behaviour is mucus secretion, which reduces friction and enhances suction.
Lead author Tianqi Yue explained: “People know that snails have a stable adhesive sliding behaviour, even though they are carrying a heavy payload, in this case a shell.
“Inspired by this, we presented a ‘sliding suction’ mechanism and developed a sliding suction robot, which achieved comparable sliding ability as snails.”
