MENU

Strings that can vibrate forever (kind of)

Strings that can vibrate forever (kind of)

Technology News |
By Wisse Hettinga



Researchers from TU Delft and Brown University have engineered string-like resonators capable of vibrating longer at ambient temperature than any previously known solid-state object

A 100 year swing on a microchip

“Imagine a swing that, once pushed, keeps swinging for almost 100 years because it loses almost no energy through the ropes,” says associate professor Richard Norte. “Our nanostrings do something similar but rather than vibrating once per second like a swing, our strings vibrate 100,000 times per second. Because it’s difficult for energy to leak out, it also means environmental noise is hard to get in, making these some of the best sensors for room temperature environments.

This innovation is pivotal for studying macroscopic quantum phenomena at room temperature—environments where such phenomena were previously masked by noise. While the weird laws of quantum mechanics are usually only seen in single atoms, the nanostrings’ ability to isolate themselves from our everyday heat-based vibrational noise allows them to open a window into their own quantum signatures; strings made from billions of atoms. In everyday environments, this kind of capability would have interesting uses for quantum-based sensing.

“Our manufacturing process goes in a different direction with respect to what is possible in nanotechnology today,” said Dr. Andrea Cupertino, who spearheaded the experimental efforts. The strings are 3 centimetres long and 70 nanometres thick, but scaled up, this would be the equivalent of manufacturing guitar strings of glass that are suspended half a kilometre with almost no sag. “This kind of extreme structures are only feasible at nanoscales where the effects of gravity and weight enter differently. This allows for structures that would be unfeasible at our everyday scales but are particularly useful in miniature devices used to measure physical quantities such as pressure, temperature, acceleration and magnetic fields, which we call MEMS sensing,” explains Cupertino.

If you enjoyed this article, you will like the following ones: don't miss them by subscribing to :    eeNews on Google News

Share:

Linked Articles
10s