
Supercomputer and quantum computer in harmony
The University of Innsbruck and the spin-off AQT have integrated a quantum computer into a high-performance computing (HPC) environment for the first time in Austria
Demand for computing power is constantly increasing and the consumption of resources to support these calculations is growing. Processor clock speeds in conventional computers, typically a few GHz, appear to have reached their limit. Performance improvements over the last ten years have focused primarily on the parallelization of tasks using multi-core systems, which are operated in HPC centers as fast networked multi-node computing clusters. However, computing power only increases approximately linearly with the number of nodes. Instead of focusing on a homogeneous setup of identical nodes, development has shifted to the operation of heterogeneous infrastructures consisting of various specialized nodes or accelerators such as GPUs or NPUs, each optimized for a specific calculation. “With the advent of quantum computers and their potential to solve certain problems in chemistry or materials science much faster than is classically possible, quantum accelerators for HPC computers are a new, very exciting possibility,” explains quantum physicist Thomas Monz, assistant professor at the University of Innsbruck and CEO of the spin-off AQT.
Researchers and developers at the University of Innsbruck und AQT started to investigate the integration of a quantum computer into an HPC environment in the context of the FFG-funded project HPQC. Building on top of standardised interfaces for quantum computers, the team in Innsbruck successfully interfaced the UIBK-operated computing cluster “LEO5” with the “IBEX Q1” quantum computer at AQT. The respective work sets the stage for future research and development on quantum-enabled solutions within heterogeneous infrastructures.
