MENU

Supercomputer built with Raspberry Pi boards

Technology News |
By Christoph Hammerschmidt

The system brings a powerful high-performance-computing testbed to system-software developers and researchers while reducing the cost and power consumption compared to other HPC systems by using boards from the Raspberry Pi Foundation in Cambridge.

“It’s not like you can keep a petascale machine around for R&D work in scalable systems software,” said Gary Grider, leader of the High Performance Computing Division at Los Alamos National Laboratory, which hosts the Trinity supercomputer. “The Raspberry Pi modules let developers figure out how to write this software and get it to work reliably without having a dedicated testbed of the same size, which would cost a quarter billion dollars and use 25 megawatts of electricity.”

 

Australian company BitScope Designs (www.bitscope.com.au), developer of BitScope Blade, an infrastructure platform for Raspberry Pi available globally via element14, built a large Raspberry Pi cluster for the pilot conceived at Los Alamos National Laboratory (LANL), and with collaboration by  SICORP of Albuquerque, New Mexico. The system consists of five rack-mounted Pi Cluster Modules, each with 150 four-core nodes of Raspberry Pi ARM processor boards. They are fully integrated with network switching infrastructure. With a total of 750 CPUs with 3,000 cores, the system gives developers exclusive time on an inexpensive but highly parallelized platform for test and validation of scalable systems software technologies. The whole system uses 2.2kW.

“Having worked with Raspberry Pi for quite some time, I’ve long thought it the ideal candidate to build low-cost cloud and cluster computing solutions for research and education,” said Bruce Tulloch, CEO of BitScope in Australia which developed the racks. The Pi Cluster Modules can also be used for better simulation of large-scale sensor networks, with flexible I/O to connect the actual sensor devices as well as HPC network topology research, to improve production performance, as well as applications that scale across the internet of things (IoT).

Eben Upton, CEO of Raspberry Pi Trading said: “This is the first time we’ve seen Raspberry Pi packaged in such a way that clusters of potentially very large size can be built. This project demonstrates that even in the field of advanced supercomputing research, Raspberry Pi can have a fascinating role to play.”

www.lanl.gov

Related stories:


Share:

Linked Articles
eeNews Europe
10s